
How Do Developers Refactor Code to Improve
Code Reusability?

Eman Abdullah AlOmar1 ID (�), Philip T. Rodriguez1, Jordan Bowman1,
Tianjia Wang1, Benjamin Adepoju1, Kevin Lopez2, Christian Newman1, Ali

Ouni3 ID , and Mohamed Wiem Mkaouer1 ID

1 Rochester Institute of Technology, Rochester, NY, USA
{eaa6167,ptr5201,jeb4905,tw7205,ba1724,cdnvse,mwmvse}@rit.edu

2 California State University, Turlock, CA, USA
klopez43@csustan.edu

3 ETS Montreal, University of Quebec, Montreal, QC, Canada
ali.ouni@etsmtl.ca

Abstract. Refactoring is the de-facto practice to optimize software
health. While there has been several studies proposing refactoring strate-
gies to optimize software design through applying design patterns and
removing design defects, little is known about how developers actually
refactor their code to improve its reuse. Therefore, we extract, from 1,828
open source projects, a set of refactorings which were intended to improve
the software reusability. We analyze the impact of reusability refactorings
on state-of-the-art reusability metrics, and we compare the distribution
of reusability refactoring types, with the distribution of the remaining
mainstream refactorings. Overall, we found that the distribution of refac-
toring types, applied in the context of reusability, is different from the
distribution of refactoring types in mainstream development. In the refac-
torings performed to improve reusability, source files are subject to more
design level types of refactorings. Reusability refactorings significantly
impact, high-level code elements, such as packages, classes, and methods,
while typical refactorings, impact all code elements, including identifiers,
and parameters.

Keywords: Refactoring · Reusability · Software Metrics · Quality.

1 Introduction

Refactoring is defined as the process of changing software system in such way that
changes improve software quality and do not alter the software behaviour [13,7].
Refactoring is one of the commonly-used techniques to improve software qual-
ity [18,7]. There are different refactoring operations that could be used to improve
software quality such as a change in parameter types, move attributes/methods,
rename variables/parameters/attributes/methods/classes, extract methods, ex-
tract classes, etc [7].

https://orcid.org/0000-0003-1800-9268
https://orcid.org/0000-0003-4708-0362
https://orcid.org/0000-0001-6010-7561


2 AlOmar et al.

Refactoring plays an important role in software engineering, as its purpose is
to improve software quality. Without refactoring, software quality would continue
to deteriorate and make development more difficult. Researchers conducted
many studies on refactoring in different areas, such as finding the approach to
effectively refactor code and determining the impact of refactoring on software
quality. One particular aspect of refactoring is increasing the reusability of
software components, which provides developers a more efficient way to utilize
existing code to create new functionality. Creating reusable software components
facilitates development and maintenance since less work is needed to accomplish
additional functionality.

While it is usually true that refactoring improves software quality, it is not
known how reusability refactoring impacts metrics. Moser et al. [10] has found
that the appropriate refactoring can make the necessary design level changes to
improve the software reusability, however, there is no practical evidence on how
developers refactor code to improve reusability in practice.

The purpose of this paper is to investigate how developers use refactoring when
they state they are improving code reusability. Therefore, we have mined commits
from 1,828 well-engineered project, were we have identified 1,957 reusability
commits. We refer to a commit as a reusability commit where its developer
explicitly mentions, in the commit message, that a refactoring is performed to
improve reusability. Then we extract all refactorings executed in these reusability
commits, and we label them as reusability refactorings. To better understand
how developers perceive reusability and apply it in real-world scenarios, we
examine how these refactorings manifest in the code by examining their impact
on code quality. Furthermore, to check if there are some refactoring patterns that
are specific to reusability, we report the distribution of reusability refactorings
compared to other refactorings and the distribution of the different types of
refactored code elements in reusability refactorings. To perform this analysis, we
formulate the following research questions:

RQ1. Do developers refactor code differently for the purpose of improving
reusability?

To answer this research question, we execute Refactoring Miner [19] to extract
the type of refactorings that are chosen by developers to improve reusability.
We also investigate if there are any refactoring patterns that are specific to
reusability, by comparing the distribution of reusability-related refactorings, with
the distribution of refactorings for other mainstream development tasks. Then,
we identify any significant differences between the distribution values in the two
populations.

RQ2. What is the impact of reusability refactorings on structural metrics?

To answer this research question, we consider the state-of-the-art reusability
structural metrics, extracted from previous studies [10,4]. We calculate these
metrics on files before and after they were refactored for improving reusability.
Then we analyze the impact of refactorings on the variation of these metrics, to
see if they were capturing the improvement.



How Do Developers Refactor Code to Improve Code Reusability? 3

The results of our study indicate that when developers make reusability
changes, they seem to significantly impact metrics related to methods and
attributes, but not parameters or interfaces. Additionally, developers perform
reusability changes much less than regular refactoring changes. Aid from our
empirical analysis, we provide the software reuse community with a replication
package, containing the dataset we crawled, the files containing all the metric
values, for the purpose of replication and extension4.

The remainder of this paper is organized as follows: Section 2 includes some
existing studies related to our work. Section 3 presents the design of our empirical
study, Section 4 shows the results of our experiments, Section 5 describes the
threats the validity to our study and any mitigation we took to minimize those
threats, and Section 6 summarizes the contributions and results of our study.

2 Related Work

Research in refactoring software has covered a variety of aspects, including
tools and methods to facilitate refactoring and accurately assess the impact of
refactoring on software quality. Pantiuchina et al. [14] talked about determining if
there was a difference in how developers perceive refactorings will be helpful, and
how the metrics say the refactorings were. That study determined that even if a
developer reports that there was a refactoring done it might not be reflected in the
metrics. This study focuses on comparing specific refactorings relating to certain
metrics, specifically “cohesion”, “coupling”, “readability”, and “complexity”, to
metrics that measure those attributes, while we focused on using metrics to
determine if there was a quantifiable difference, and if so, what that difference
was, during self-proclaimed reusability refactorings. Even then, something to take
away from this study is that measuring refactoring code changes focusing on
quality of life, rather than strictly functional, can have many moving parts not
measured by metrics. Metrics do not tell the whole story, and while it is good to
see what metrics are affected when developers improve reusability, it could also
be helpful to include information and narratives from actual developers alongside
the pure metrics.

Fakhoury et al. [6] have shown that the existing readability models are not
able to capture the readability improvement with minor changes in the code,
and some metrics which can effectively measure the readability improvement
are currently not used by readability models. The authors also studied the
distribution of different types of changes in readability improvements, which is
similar to our research question, which examines the distribution of the different
types of refactored code elements in reusability refactorings.

Prior works [1,15,2] have explored how developers document their refactoring
activities in commit messages; this activity is called Self-Admitted Refactoring
or Self-Affirmed Refactoring (SAR). In particular, SAR indicates developers’
explicit documentation of refactoring operations intentionally introduced during
a code change.

4 https://smilevo.github.io/self-affirmed-refactoring/

https://smilevo.github.io/self-affirmed-refactoring/


4 AlOmar et al.

AlOmar et al. [3] showed that there is a misperception between the state-
of-the-art structural metrics widely used as indicators for refactoring and what
developers consider to be an improvement in their source code. The research aims
to identify (among software quality models) the metrics that align with the vision
of developers on the quality attribute they explicitly state they want to improve.
Their approach entailed mining 322,479 commits from 3,795 open source projects,
from which they identified about 1,245 commits based on commit messages
that explicitly informed the refactoring towards improving quality attributes.
Thereafter, they processed the identified commits by measuring structural metrics
before and after the changes. The variations in values were then compared to
distinguish metrics that are significantly impacted by the refactoring, towards
better reflecting the intention of developers to improve the corresponding quality
attribute. Our study also utilized software quality metrics to evaluate the impact
of refactoring on reusability.

Research particularly in reusability refactoring by Moser et al. [10] showed
that refactoring increases the quality and reusability of classes in an industrial,
agile environment. Similar to our paper, their study examines the impact of
refactoring on quality metrics related to reusability on the method and class
levels, such as Weighted Method per Class (WMC) and Coupling Between Object
(CBO), respectively. The results of their experiment revealed that refactoring
significantly improved the metrics Response for Class (RFC) and Coupling
Between Object classes (CBO) related to reusability. However, the limitations of
their study involved a small project consisting of 30 Java classes and 1,770 Lines
of Code (LOC) developed by two pairs of programmers over the course of 8 weeks.
In addition, the authors considered how general refactoring operations impact
metrics related to reusability, rather than specifically reusability refactorings. In
our study, we examined 1,828 projects and 154,820 commits that modified Java
files. We also considered how reusability changes affect software quality metrics
and how what kinds of refactoring operations were performed during reusability
changes. Table 1 shows the summary of each study related to our work.

Table 1: Summary of related studies.
Study Year Focus Dataset Size Quality Attribute Software Metric

Moser et al. [10] 2006 Reusability measurement over time. 30 Java classes Reusability
LCOM / RFC / CC
CBO / WMC /LOC
DIT /NOC

Pantiuchina et al. [14] 2018 Developer’s perception & quality
1,282 commits.

Cohesion / Coupling
Complexity / Readability

LOCM / C3 / CBO
RFC / WMC / B&W
Sread

Fakhoury et al. [6] 2019 Developer’s perception & quality 548 commits Readability B&W / Sread / Dorn

AlOmar et al. [3] 2019 Developer’s perception & quality 1,245 commits

Coupling / Cohesion
Complexity / Inheritance
Polymorphism / Encapsulation
Abstraction / Size

LCOM / CBO / FANIN
FANOUT / RFC /CC
WMC / Evg / NPATH
MaxNest / DIT / NOC
IFANIN / LOC / CLOC
STMTC / CDL / NIV
NIM

This work 2020 Developer’s perception & quality 1,967 commits Reusability
LCOM / CBO / RFC
CC / WMC / LOC
DIT / NOC



How Do Developers Refactor Code to Improve Code Reusability? 5

3 Experimental Design

Depicted in Figure 1 is an overview of our experiment methodology. We detail
each activity of our methodology in the subsequent subsections. The dataset
utilized in this study is available for extension and replication purpose 5.

Fig. 1: Empirical study design overview.

3.1 Selection of Quality Attributes and Structural Metrics

We started by conducting a literature review on existing and well-known software
quality metrics [5,8,9]. Next, we extracted metrics that are used to assess several
object-oriented design aspects in general, and software reusability in particular.
For example, the RFC (Response for Class) metric is typically used to measure
visibility of a given class in the project, the more a class is responsive, the more
it can be accessed and its functionality can be reused by other objects in the
system.

The process left us with 8 object-oriented metrics as shown in Table 2.
The list of metrics is (1) well-known and defined in the literature, and (2) can
assess on different code-level elements, i.e., method, class, package, and (3) can

5 https://smilevo.github.io/self-affirmed-refactoring/

https://smilevo.github.io/self-affirmed-refactoring/


6 AlOmar et al.

be calculated by the tool we considered. All metrics values are automatically
computed using the tool Understand6, a software quality assurance framework.

Table 2: Reusability and its corresponding structural metrics used in this study.
Quality Attribute Study Software Metric

Cohesion [4,10] Lack of Cohesion of Methods (LCOM)

Complexity [10] Response for Class (RFC)
[10] Cyclomatic Complexity (CC)

Coupling [4,10] Coupling Between Objects (CBO)

Design Size [4,10] Weighted Method per Class (WMC)
[4,10] Line of Code (LOC)

Inheritance [4,10] Depth of Inheritance Tree (DIT)
[4,10] Number of Children (NOC)

3.2 Refactoring Detection

The projects in our study consist of 1,828 open-source Java projects, which were
curated projects hosted on GitHub. These projects were selected from a dataset
made available by Munaiah et al. [11], while verifying that these are Java-based
projects since this is the only language the Refactoring Miner [19] supports.
These projects utilize software engineering practices such as documentation and
testing.

We utilize Refactoring Miner [19] for mining refactorings from each project in
our dataset. Refactoring Miner is designed to analyze code changes (i.e., commits)
in Git repositories to detect applied refactorings. Our choice of the mining tool is
driven by its accuracy (precision of 98% and a recall of 87%) and is suitable for
a study that requires a high degree of automation since it can be used through
its external API.

In this phase, we collect a total of 862,888 refactoring operations from 154,820
commits. An overview of the studied benchmark is provided in Table 3.

Table 3: Studied dataset statistics.
Item Count

Studied projects 1,828
Commits with refactorings 154,820
Commits with reus*/reusability Keywords 1,967
Reusability refactoring operations 3,065

6 https://scitools.com/

https://scitools.com/


How Do Developers Refactor Code to Improve Code Reusability? 7

3.3 Reusability Commits Extraction

After extracting all refactoring commit messages detected by Refactoring Miner,
our next step consists of analyzing each of the commit messages as we want to
only keep commits where refactoring is documented, i.e., self-affirmed refactoring
(SAR) [1]. As for the commit message selection, we initially use a keyword-based
approach to find those commits that contain the keywords reus* 7 and reusability.
We have chosen these two keywords because of their popularity in the development
community as being used by developers to describe software reusability [17]. We
then kept commits whose messages contained the two keywords. We performed a
manual analysis of all the commits, and we ended up removing any duplicates and
false positives. This process resulted in selecting 1,967 commits, containing 3,065
refactorings, as our dataset for this study. Each dataset instance is a commit,
along with its corresponding refactorings.

Fig. 2: A sample instance of our dataset.

As an illustrative example, Figure 2 details a commit whose message states
the relocation of the method classFor(asmType) to an internal class utility
class for the purpose of applying the single responsibility principle and code
reusability8. After running Refactoring Miner, we detected the existence of a
Move method refactoring from the class ExplicitMappingVisitor to the class Types.
The detected refactoring matches the description of the commit message, and
gives more insights about the old placement of the method, which was absent
in the textual description. As we explain in the following subsection, we need
to locate all the code elements involved in the refactoring (source class, target
class, etc.) for the purpose of evaluating the quality of the relocation in terms of
impact of structural metrics, such as coupling and cohesion.

3.4 Metrics Calculation

To generate the metric values for reusability commits, we ran code evaluation
tools, specifically using Understand9. The metrics we used to evaluate the code
quality are summarized in Table 2.

7 Regular expression was used to capture all expansions of reus such as reuses, reusing,
reuse, etc.

8 link to the commit: https://github.com/modelmapper/modelmapper/commit/
6796071fc6ad98150b6faf654c8200164f977aa4

9 https://scitools.com/features/



8 AlOmar et al.

We then used SQL queries to find reusability commits in the dataset and
their associated project links to clone using Git and exported the results from our
dataset to a combined Comma-Separated Value (CSV) file. Using a shell script,
we cloned the projects, checked out the versions for each commit, and ran the
Git diff command to see which files changed in each commit. If files were deleted
in a commit, we included the metric values for those files before the commit but
not after it. If files were added in a commit, we included the metric values for
those files after the commit but not before it. If files were renamed or moved in a
commit, then we included the metric values for those files both before and after
the commit. Our shell script then ran the Understand tool to generate metrics
for the changed files for the versions before and after each reusability commit,
resulting in two files containing metric values for each commit: (1) one file for the
files changed before the commit and (2) another file for the files changed after
the commit.

Since each metric value before and after the commit are dependent to each
other, we decided to use the Wilcoxon Signed-rank Test [20] to determine whether
or not there were statistically significant differences in the metric values for all
changed files before and after the reusability commits. We formulated our null
hypothesis as follows: there was no improvement in the metrics we analyzed
between before and after the reusability refactoring. We formulated our alternate
hypothesis as follows: there was an improvement shown as an increase. To achieve
that, we created Python scripts to order and sort all the values from the above
results from Understand to ensure that the rows in both before and after files
are corresponding to each other. Next, we combined the data in the CSV files
before and after the commits together into another two CSV files each have a
total of 185,244 metric values: one CSV file for all code elements in changed files
before the reusability commits, and another CSV file for all code elements in
changes files after the commits. The Wilcoxon Signed-rank Test allowed us to
determine if any metrics were statistically significantly changed when developers
performed self-proclaimed reusability refactorings.

4 Results

This section reports and discusses our experimental results and aims to answer
our research questions.

4.1 RQ1. Do developers refactor code differently for the purpose of
improving reusability?

This research question aims to compare refactoring activity in reusability commits
with the refactoring activity that can be found in mainstream development tasks
(feature updates, bug fix, etc.). Since we have a dataset of all refactorings
performed in the 1,828 projects that we study, we separate refactorings that
belong to the reusability commits (refactorings performed for the purpose of
improving reusability), which we refer to as reusability refactorings. We refer to



How Do Developers Refactor Code to Improve Code Reusability? 9

the remaining refactorings as non-reusability refactorings. Then, for each group,
we calculate the percentage of each refactoring type, among the total refactorings
of that group.

Figure 3 visualizes, by percentage of the total refactoring operations in each
of the respective sets, the distributions of refactoring operations. We observe
that the distribution of reusability refactorings varies from the non-reusability
refactorings. In fact, the top frequent types in reusability refactorings are, Move
Method, Extract Method, and Pull-Up Method, whose percentages are respectively,
17.29%, 14.85%, and 11.21%. For non-reusability refactorings, the top frequent
type were Rename Attribute, Rename Method, and Rename Variable, as their
percentages are respectively, 18.96%, 11.92%, and 11.86%. While the move related
types were highly solicited in reusability refactorings, the rename activity was
dominant for non-reusability refactorings, which was expected since previous
studies who analyzed mainstream refactoring has found that renames are the
most popular refactorings [19,3,15,16]. However, reusability refactorings seem
to be different. To analyze the extent to which reusability and non-reusability
refactorings vary, we compare the distribution of refactoring refactorings identified
for each group using the Wilcoxon signed-rank test, a pairwise statistical test
verifying whether two sets have a similar distribution [20]. If the p-value is
smaller than 0.05, the distribution difference between the two sets is considered
statistically significant. The choice of Wilcoxon comes from its non-parametric
nature with no assumption of a normal data distribution. Upon running the
statistical test, the null hypothesis was rejected and the difference between group
distributions was found to be statistically significant.

Another interesting observation that we draw is the popularity of method-level
refactoring, being in in TOP 3 most frequent reusability refactorings. Figure 4
shows the distribution of code elements impacted by refactorings, and we notice
that more than 50% of refactorings were performed at the method level.

To better understand the observed results, we sampled a subset of reusability
refactorings, and we have extracted two main patterns:

Functionality extraction. When developers are interested in a needed func-
tionality, which is found inside a long method, containing various functionalities,
they extract the code elements, belonging to the needed functionality, into a
newly created separate method, and they update the original method with the
appropriate method calls. This decomposition process is known as Extract Method.
The newly extracted method has its own visibility, which is independent from
the original method, and so developers can increase its visibility of the purpose
of reuse, and so other objects and methods can now access it.

Functionality movement. To increase the reusability of a given method,
we have noticed that developers typically move methods from less visible classes,
into more visible classes, in the system. Various methods were moved into
utility classes, which are eventually offering their services to the other classes
in the system, this explains why Move Method was the most popular type in
reusability refactorings, according to Figure 3. Our qualitative analysis has also
shown scenarios of moving method up, from a child class, into a super class,



10 AlOmar et al.

0 2 4 6 8 10 12 14 16 18 20

Extract Method

Inline Method

Rename Method

Move Method

Move Attribute

Pull up Method

Pull up Attribute

Push down Method

Push down Attribute

Extract Superclass

Extract Interface

Move Class

Rename Class

Change Package

Extract Class

Extract Subclass

Extract Variable

Inline Variable

Parameterize Variable

Rename Variable

Rename Parameter

Rename Attribute

Replace Attribute

Move Source Folder

14.85

1.03

4.96

17.29

10.22

11.21

8.96

1.75

1.03

7.78

0.24

5.22

2.02

0.21

2.15

0.17

2.67

0.62

1.06

1.15

1.97

2.9

3 · 10−2

0.51

7.53

1.18

11.92

5.51

6.95

3.56

2 · 10−2

1.34

0.61

0.8

0.25

11.01

3.48

0.36

0.82

0.12

3.37

0.69

0.57

11.86

6.38

18.96

4 · 10−2

0.67

Percentage (%)

Reusability Non-Reusability

Fig. 3: Percentages of reusability refactoring and non-reusability refactorings,
clustered by type.



How Do Developers Refactor Code to Improve Code Reusability? 11

for the purpose of sharing its behavior across all subclasses through inheritance.
This refactoring is known as Pull-Up Method, which was found to be the third
popular type in reusability refactorings, while being not popular in non-reusability
refactorings.

Method
50.12%

Attribute
20.14%

Class
13.33%

Interface 0.24%

Variable
11.57%

Parameter 3.99%

Fig. 4: Distribution of code elements in reusability refactoring commits.

Summary. We have shown that the distribution of refactoring types,
applied in the context of reusability, is different from the distribution
of refactoring types in mainstream development. In the refactorings per-
formed to improve reusability, files are subject to more design level
types of refactorings (e.g., Move Method, Extract Method) in general,
and inheritance-related refactorings (e.g., Pull-up Method, Pull-up At-
tribute) in particular, while in other refactorings, files tend to undergo more
renames (e.g., Rename Method, Rename Variable) and data type changes
(e.g., Change Variable Type) to identifiers. Reusability refactorings heavily
impact, high-level code elements, such as packages, classes, and methods,
while typical refactorings, impact all code elements, including identifiers,
and parameters.

4.2 RQ2. What is the impact of reusability refactorings on
structural metrics?

To answer this research question, we investigate the impact of reusability refac-
torings on the state-of-the-art metrics, which have been used by previous studies,
to recommend reusability changes. As a reminder, we aim to look at the variation
of each metric value after the execution of the refactoring, therefore, we checkout
the project files, right before the reusability commit, and we calculate metrics



12 AlOmar et al.

values, and after the reusability commit, and we recalculate the metrics values.
Note that we only consider files that were involved in the commit, as there files
are considered part of developer’s intention of improving reusability. The results
of metrics boxplots are outlined in Figure 5. To further investigate the significance
of difference between the boxplots, we also use the Wilcoxon Signed-rank Test.
Statistical settings included using a 0.05 alpha value for the significance level.
We hypothesize that reusability refactorings will optimize metrics by reducing
them (the lower is the value of the metric, the better is the software structural
quality). Our alternative hypothesis is accepted if the before refactoring boxplot
is significantly larger than the after refactoring boxplot. The Wilcoxon Signed-
rank Test results indicating whether or not there were statistically significant
improvements before and after reusability commits is shown in Table 4.

According to Figure 5, reusability refactorings had no impact on the Number
of Children (NOC) Depth of Inheritance Tree (DIT), and Response for Class
(RFC). These results can be explained by the fact that the majority of reusability
refactoring are not targeting classes. In fact, if we refer to Figure 4, only 13.3%
of reusability refactoring targeted classes, and exctrating subclasses, which would
have impacted these metrics, represent only 0.13%, and so, its impact is negligible.

On the other hand, we measure an increase in the weighted methods per class,
and the variation is found to be statistically significant (p < 0.05). According
to Figure 3, the Extract Method refactoring has been found to be very popular
in reusability refactoring, and so, developers tend to create new methods while
extracting the reusable code from the longer methods. This implies the sudden
increase of methods count, per class. While developers are expected to keep the
number of methods lower in classes, the impact of reusable functionality from
longer classes, creates free methods that can be pulled up to either superclasses,
and be shared with all children, or relocated to operate on variables that may
not belong to its original class. This explains decrease of the Coupling Between
Objects (CBO) and the slight decrease in the Lack of Cohesion of Methods
(LCOM), which means that methods have become more cohesive. However, its
corresponding statistical test show no significant different, but its value was close
to 0.05. Similarly, we notice slight improvement in the Lines of Code (LOC),
with no statistical significance but close p-value (i.e., 0.066). The extraction of
methods helps in reducing cloning functionalities in multiple locations in the
code. Also, pulling methods up the hierarchy, will allow subclasses to inherit
it, and so, lines of code will decrease, unless when the method gets overridden.
Moreover, the Cyclomatic Complexity (CC) has decreased after reusability code
changes with no statistical significance. A proper extraction of sub-methods tends
to break down long methods, and slightly decrease their complexity.

As a meta-review, the majority of state-of-the-art metrics did not capture any
improvement, or captured non-significant improvement, when developers refactor
their code for the purpose of reusability. This is an interesting finding for our
future research directions, as we want to further increase our dataset, in terms
of projects, and programming languages, in order to experiment whether there
is a shortage of metrics that properly measure what developers consider to be



How Do Developers Refactor Code to Improve Code Reusability? 13

(a) Percent Lack of Cohesion (b) Response for Class

(c) Cyclomatic Complexity (d) Coupling Between Object

(e) Weighted Method per Class (f) Line of Code

(g) Depth of Inheritance Tree (h) Number of Children

Fig. 5: Boxplots for metric values before and after reusability commits for different
sets of code elements.



14 AlOmar et al.

at design level change to improve reusability. Such investigations will bridge the
gap between how existing research on software reuse evaluates code changes, and
how developers concretely achieve it.

Table 4: Wilcoxon Signed-Rank Test results for all code elements between before-
after versions of reusability commits.

Metric p-value Impact Reject H0?

Percent Lack of Cohesion (LCOM) 0.0707 +ve False

Response for Class (RFC) 0.2925 No False

Cyclomatic Complexity (CC) 0.3298 +ve False

Coupling Between Objects (CBO) 0.2739 +ve False

Weighted Method per Class (WMC) 0.0372 -ve True

Line of Code (LOC) 0.06621 +ve False

Depth of Inheritance Tree (DIT) 0.7446 No False

Number of Children (NOC) 0.5292 No False

Summary. When developers refactor their code for the purpose of
reusability, we found that the number of methods significantly increased,
but the majority of the state-of-the-art metrics did not capture any
improvement, or captured non significant improvement.

5 Threats to Validity

The first threat is that the analysis was restricted to only open source, Java-based,
Git-based repositories. However, we were still able to analyze 1,828 projects that
are highly varied in size, contributors, number of commits and refactorings.
Additionally, in this paper, we analyzed only the 28 refactoring operations
detected by Refactoring Miner, which can be viewed as a validity threat because
the tool did not consider all refactoring types mentioned by Fowler et al. [7].
However, in a previous study, Murphy-Hill et al. [12] reported that these types
are amongst the most common refactoring types. Moreover, we did not perform a
manual validation of refactoring types detected by Refactoring Miner to assess its
accuracy, so our study is mainly threatened by the accuracy of the detection tool.
Yet, Tsantalis et [19] reported that Refactoring Miner has a precision of 98%
and a recall of 87% which significantly outperforms the previous state-of-the-art
tools, which gives us confidence in using the tool.

Another threat to validity is that, as we mentioned above, while we determined
whether a commit has a reusability change, we only look for terms like reus in
the commit message, although not all reusability commit messages may contain
those words.



How Do Developers Refactor Code to Improve Code Reusability? 15

Another critical threat, is the fact that not all refactorings are root-canal.
Developers may be interleaving refactorings with other types of changes, and
so, this may become a noise in our measurements. To mitigate this issue, we
considered commits that both contain an explicit statement about reusability,
and contain at least one refactoring operation, in order to correlate between the
refactoring and its documentation. Also, the existence of several unrelated files,
in the commit, as part of other changes, can also become a noise for our metrics
measurements. To mitigate this threat, we measure the metrics for code elements
that are being refactored, and not all the changed files in the reusability commit.

6 Conclusion

In this paper, we performed a study on analyzing reusability refactorings based
on information in Java projects from our dataset. We found that in reusability
refactorings, the changes developers performed would significantly affect metrics
pertaining to methods, but not significantly affect metrics regarding comments
or cohesion of classes. We also found that less than 0.4% commits are reusability
refactorings in 154,820 commits. Another fact we found is that method is modified
more frequently in reusability refactoring changes. Our results have shown some
existing facts in reusability refactorings, and those findings could help developers
to make better decisions while performing reusability refactorings in the future.

Some recommendations that we have for future work involve comparing
different subsections of data, and determining what refactorings are related to
reusability. Specifically, we think that it would be interesting to compare the
results that we got to instances where each individual refactoring detected was
analyzed to explore if it was done for reusability or not, to see if us grouping all
refactorings in a commit for reusability and non-reusability is similar. We also
think that analyzing the code before and after the reusability commits for different
metrics that are more usability based, such as adaptability, understandability, or
portability, could be an interesting future work, though an issue might arise to
finding specific ways to measure those metrics. Moreover, we plan to find a better
way to figure out if a commit was a reusability refactoring or not. Since this
work relies on the commit message, there could be commits incorrectly labeled,
or commits that are reusability but not labeled as such that we are missing.

Acknowledgements This material is based on work supported by the National
Science Foundation under Grant No. 1757680.

References

1. AlOmar, E., Mkaouer, M.W., Ouni, A.: Can refactoring be self-affirmed? an ex-
ploratory study on how developers document their refactoring activities in commit
messages. In: 2019 IEEE/ACM 3rd International Workshop on Refactoring (IWoR).
pp. 51–58. IEEE (2019)



16 AlOmar et al.

2. AlOmar, E.A., Mkaouer, M.W., Ouni, A.: Toward the automatic classification of
self-affirmed refactoring. Journal of Systems and Software p. 110821 (2020)

3. AlOmar, E.A., Mkaouer, M.W., Ouni, A., Kessentini, M.: On the impact of refac-
toring on the relationship between quality attributes and design metrics. In: 2019
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). pp. 1–11. IEEE (2019)

4. Alshayeb, M.: Empirical investigation of refactoring effect on software quality.
Information and software technology 51(9), 1319–1326 (2009)

5. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on software engineering 20(6), 476–493 (1994)

6. Fakhoury, S., Roy, D., Hassan, A., Arnaoudova, V.: Improving source code read-
ability: theory and practice. In: 2019 IEEE/ACM 27th International Conference on
Program Comprehension (ICPC). pp. 2–12. IEEE (2019)

7. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley
Professional (2018)

8. Lorenz, M., Kidd, J.: Object-oriented software metrics, vol. 131. Prentice Hall
Englewood Cliffs (1994)

9. McCabe, T.J.: A complexity measure. IEEE Transactions on software Engineering
(4), 308–320 (1976)

10. Moser, R., Sillitti, A., Abrahamsson, P., Succi, G.: Does refactoring improve reusabil-
ity? In: International Conference on Software Reuse. pp. 287–297. Springer (2006)

11. Munaiah, N., Kroh, S., Cabrey, C., Nagappan, M.: Curating github for engineered
software projects. Empirical Software Engineering 22(6), 3219–3253 (2017)

12. Murphy-Hill, E., Parnin, C., Black, A.P.: How we refactor, and how we know it.
IEEE Transactions on Software Engineering 38(1), 5–18 (2012)

13. Opdyke, W.F.: Refactoring object-oriented frameworks (1992)
14. Pantiuchina, J., Lanza, M., Bavota, G.: Improving code: The (mis) perception of

quality metrics. In: 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME). pp. 80–91. IEEE (2018)

15. Peruma, A., Mkaouer, M.W., Decker, M.J., Newman, C.D.: Contextualizing rename
decisions using refactorings, commit messages, and data types. Journal of Systems
and Software p. 110704 (2020)

16. Peruma, A., Newman, C.D., Mkaouer, M.W., Ouni, A., Palomba, F.: An exploratory
study on the refactoring of unit test files in android applications. In: Conference on
Software Engineering Workshops (ICSEW’20) (2020)

17. Sharma, A., Kumar, R., Grover, P.: A critical survey of reusability aspects for
component-based systems. World academy of science, Engineering and Technology
19, 411–415 (2007)

18. Stroggylos, K., Spinellis, D.: Refactoring–does it improve software quality? In: Fifth
International Workshop on Software Quality (WoSQ’07: ICSE Workshops 2007).
pp. 10–10. IEEE (2007)

19. Tsantalis, N., Mansouri, M., Eshkevari, L.M., Mazinanian, D., Dig, D.: Accurate
and efficient refactoring detection in commit history. In: Proceedings of the 40th
International Conference on Software Engineering. pp. 483–494. ACM (2018)

20. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics bulletin 1(6),
80–83 (1945)


	How Do Developers Refactor Code to Improve Code Reusability?

