
1

Towards Prioritizing Documentation Effort
Paul W. McBurney1, Siyuan Jiang2, Marouane Kessentini3,

Nicholas A. Kraft4, Ameer Armaly2, Wiem Mkaouer3, and Collin McMillan2

1 Department of Computer and Information Science
University of Pennsylvania, Philadelphia, PA

paulmcb@seas.upenn.edu
2 Department of Computer Science and Engineering

University of Notre Dame, Notre Dame, IN, USA
{sjiang1, aarmaly, cmc}@nd.edu

3Department of Computer and Information Science
University of Michigan-Dearborn, Dearborn, MI, USA

{marouane, mmkaouer}@umich.edu
4ABB Corporate Research, Raleigh, NC, USA

nicholas.a.kraft@us.abb.com

Abstract—Programmers need documentation to comprehend software,
but they often lack the time to write it. Thus, programmers must prioritize
their documentation effort to ensure that sections of code important
to program comprehension are thoroughly explained. In this paper, we
explore the possibility of automatically prioritizing documentation effort.
We performed two user studies to evaluate the effectiveness of static
source code attributes and textual analysis of source code towards
prioritizing documentation effort. The first study used open-source API
Libraries while the second study was conducted using closed-source
industrial software from ABB. Our findings suggest that static source
code attributes are poor predictors of documentation effort priority,
whereas textual analysis of source code consistently performed well as
a predictor of documentation effort priority.

Index Terms—code documentation, program comprehension, software
maintenance.

1 INTRODUCTION

Programmers are notorious for neglecting source code docu-
mentation due to time and monetary pressures [1], [2]. These
pressures often force programmers to defer documentation
of source code until the final stages of development leading
up to a release, or to write documentation and then neglect
its maintenance [3]. Yet, the importance of documentation is
widely recognized [3], [4], [5]. High-quality documentation
has numerous benefits, ranging from better comprehension
(implying wider impact and more rapid bug repair [6])
to speedier onboarding of new employees [7]. In short,
programmers need high-quality source code documentation
but lack the time to write or maintain it.

Several approaches deal with the problem of lacking
documentation, for example, self-explanatory code that

has less need for documentation, and modern IDEs that
help programmers navigate through code so that program-
mers do not need to read documents to comprehend the
code. However, even with these techniques, it is still time-
consuming and challenging to understand a complicated
large piece of code. Manually written documents provide
insights from the developers that cannot be replaced by
other means.

Programmers must prioritize their documentation effort.
The sections of code that are the most important for de-
velopers to understand should be documented first. While
it is not ideal to skip documentation, the reality is that
not all code will always be documented to a high level of
quality. Note that, in this paper, we focus on prioritizing
documentation effort for code documentation. Other forms
of documentation, such as design documentation and user
documentation, are also important, but not the emphasis of
this study. By prioritizing source code documentation, the
programmers can help to ensure that time-limited efforts are
dedicated to the highest-value areas of code. Programmers
may intuitively “sense” what some of the high value areas
of code are, but manually marking these areas is time-
consuming for large projects. An automated solution is
desirable – documentation is one of the top areas where
programmers appreciate automation [3].

Software engineering literature would seem to suggest
that static attributes about source code would provide useful
clues for prioritization. For example, Murphy et al. [8] found
that patterns in source code are often reflected in docu-
mentation. Inoue et al. [9] and Grechanik et al. [10] found
that a developer’s program comprehension benefits from
seeing functions that are called frequently. Grechanik et al.

Author Preprint

2

detected these functions by calculating the PageRank [11] of
functions in a call graph. Stylos and Myers [12], [13] have
shown how statically-derived function usage information
can benefit documentation. Holmes [14] demonstrates how
static context is useful for finding examples for documen-
tation. Based on this and other strong literary evidence, we
formed the working hypothesis that static code attributes
assist documentation prioritization by highlighting which
sections of code are the most important for comprehension.

Besides static source code attributes, we added a textual
vector-space model (VSM) approach and a textual com-
parison approach. For the VSM approach, we calcualted
tf/idf (term frequency/inverse document frequency) for
each word in the source code. For the textual comparison
approach, we used two similarity metrics to determine the
similarity between the source code and the corresponding
project home webpage. We computed all the attributes for
the classes in three open source Java libraries and two closed
source Java softwares. We also recruited programmers to
read the code and manually prioritize the code for docu-
mentation. Using this collected data, we trained an artificial
neural network to create a binary classifier for classifying
documentation priority. The purpose of this study is to
determine which set of candidate features (static source
code attributes, VSM, or textual comparison) can be best
used to predict for documentation priority. In this study,
we consider documentation priority at the class granularity.
Thus, we are providing a model for determining which
Java classes humans should document first to maximize the
efficiency of documentation effort.

Our results show that, surprisingly, the static source
code attributes were not effective with average precision
of 37.4%. In contrast, our textual comparison attributes and
the VSM approach had much higher precision of 71.2% on
average.

It should be noted that this study is both foundational
and preliminary in nature. This study is foundational in that
it is, to the best of our knowledge, the first study to suggest
an approach for automatically prioritizing source code doc-
umentation. It is preliminary in that we are investigating
candidate features for future documentation prioritization
research. We do not suggest that our resulting approach is
fully generalizable, nor is it mature enough for software
firms to use as is reliably. Our approach currently relies
largely on manual training and testing using a gold set,
which must be constructed using human experts. However,
we believe that our preliminary investigation is necessary
before future work in this direction can be accomplished.

Specific novel contributions in this paper are:
1) An experiment determining the accuracy of using static

source code attributes for documentation effort priori-
tization.

2) An experiment comparing static source code attributes,
textual comparison attributes, and the VSM approach
for documentation effort prioritization. We conducted
these experiments in both an open source and an in-
dustrial context.

3) A complete implementation of the approaches for the
purpose of reproducibility and further study. We make
all static and textual data available for the open source
projects, as well as analysis scripts and raw and pro-

cessed data.1 Textual data of the industrial projects has
been redacted due to commercial interests. All the other
data of the industrial projects is available.

Roadmap In the rest of this paper, we will introduce and
describe: the problem of prioritizing documentation effort
(Section 2), the overview of our approach (Section 3), the
gold sets (Section 4) and the features (Section 5) that we used
to build binary classifiers for prioritizing documentation,
the artificial neural network models and the training process
(Section 6), our research questions and evaluation setting
(Section 7), our quantitative results and comments made by
the participants (Sections 8 and 9), the threats to validity
(Section 10), discussion and future work (Section 11), related
work (Section 12)and conclusion (Section 13).

2 PROBLEM

In this paper, we target the problem of prioritizing software
documentation effort. Our Research Objective is to evaluate
the effectiveness of different attributes of source code to
predict whether a piece of code is important to document. To
the best of our knowledge, this is the first work that seeks to
do this. Developers need a way to prioritize documentation
effort, as developers often write incomplete documentation,
or neglect writing documentation entirely [3], [15], [16]. This
results in documentation falling behind the source code.
This disparity is referred to as a “documentation debt” and
can result in the code becoming more difficult to use and
maintain [17].

Our study has a large potential impact on how develop-
ers document source code. If developers can know what sec-
tions of source code are most important to document, their
efforts can be focused there first. Effective documentation
prioritization would ensure that software documentation is
present on sections of code critical to understanding and
maintaining the system. Additionally, this could benefit
development teams with very limited resources. Finally,
documentation prioritization could work well with auto-
matic source code summarization. While automatic source
code summarization does not yet match the quality of
manually-written documentation [18], it could still be used
to supplement manually-written documentation in lower
priority sections of source code.

3 APPROACH OVERVIEW

To assess the effectiveness of different attributes of source
code in predicting the importance of documenting a class,
we followed four steps: obtaining “gold sets”, extracting
features, training models with different features, comparing
the performances of different models.

We performed two user studies to create “gold sets” of
important Java classes to document in the selected projects.
The first study took place at the University of Notre Dame.
The second study took place at ABB Corporate Research.
The primary reason we performed two user studies is that
we wanted to consider two different groups of program-
mers. The two studies are complementary. In the open-
source study, we consider the perception of importance to

1. http://www.cis.upenn.edu/∼paulmcb/research/doceffort/

Author Preprint

http://www.cis.upenn.edu/~paulmcb/research/doceffort/

3

Fig. 1. An architecture of our approach for one Java project. First, we
conducted two user studies to obtain important classes (our gold set) in
each Java project. Second, we extracted static source code attributes,
textual similarity attributes, tf/idf values from source code and project
homepages. Finally, we built classification models via an artificial neural
network (ANN) to predict important classes in a Java project.

document by non-developers to a software system. In the
closed-source study, we consider the perception of impor-
tance to document by developers. We separate these two
groups using separate user studies because each group may
have different opinions on what in source code indicates
documentation importance. Developers may be biased by
sections of code they most needed to maintain, while non-
developers are learning the system anew and may not
have full understanding of the source code. Because of this
difference, our approach may work in one study but not
work in the other. So we conducted two studies to see the
effectiveness of our approach in the two studies separately.

Then, we collected attributes of source code to be used
as features in machine learning. We considered three types
of attributes to compare their effectiveness in predicting
whether a class is important to be documented. The three
types are 1) static source code attributes, which are about
static structures of code, 2) textual comparison attributes,
which are about the text similariy between the source code
of a Java class and the homepage of the corresponding
project, and 3) the vector-space model (VSM) approach,
which uses term frequency/inverse document frequency
(tf/idf), which considers the importance of each word in
a class file.

After we obtained the attributes, we used the attributes
as features and trained different models with different fea-
tures. We tried four different groups of the features: 1) only
the static source code attributes, 2) only the textual com-
parison attributes, 3) only the VSM approach, and 4) both
the static source code attributes and the textual comparison
attributes. For each Java project and each group of the
features, we built a model using the artificial neural network
(ANN). The use of the ANN is justified and described
in Section 6. Finally, we evaluated the models with cross
validation on our gold sets. An overview of our approaches
can be seen in Figure 1.

4 GOLD SETS

This section describes two studies we conducted to obtain
the gold sets. In one study, we hired graduate students to
assess whether the classes of three open source projects
are important to be documented. In the other study, we
asked professionals in industry to assess the importance
of documenting the classes of two closed source projects.

We call the first study “open source study” and the second
study “closed source study”.

4.1 Open Source Study

We performed a study on three open source projects in the
Department of Computer Science and Engineering at the
University of Notre Dame. We hired 9 graduate students
as participants. Participants were paid $100 each for their
participation. We asked each participant to evaluate the
importance of the methods in one of the three open source
projects. In the end of the study, each of the three projects
was evaluated by three of our nine participants.

4.1.1 The API Libraries and the Programming Tasks
The three open source projects that were evaluted are
NanoXML, JExcelAPI, and JGraphT. They are all Java API
libraries. The descriptions of the projects are listed below.
NanoXML A library that allows interfacing with XML files.

Website: http://nanoxml.sourceforge.net/orig/
JExcelAPI A library for interfacing with Microsoft Excel

files. Website: http://jexcelapi.sourceforge.net/
JGraphT A library for building and utilizing graphs. Web-

site: http://www.jgrapht.org/
Before evaluating an API library, the participants were

asked to do a programming task involving the API library,
so that they could know the API library. We chose the three
programming tasks that are small enough to be feasibly
completed within a reasonable time limit. The projects, as
well as a brief description of the programming task, are
listed in Table 1.

4.1.2 Participants
We ensured that no participant had previous experience
with the API library. This was done to avoid any previous
bias with the project, and ensure that each participant was
required to learn the API library. Each participant had at
least 2 years prior Java programming experience, with an
average experience of 5 years. All participants completed
the programming task or spent 70 minutes attempting it,
and used the entire remainder of the 90 minute time limit
to do as much of the survey as possible. Of the participants,
2 participants did not complete the programming task. One
programmer failed to complete the NanoXML task, while
another failed to complete the JGraphT task.

4.1.3 Evaluation Process
We asked each participant to follow the steps below to
evaluate an API library. Each programmer was given 90
minutes to complete the study.

1) Do the programming task. The purpose of the pro-
gramming task was to acquaint each participant with
the API library. A maximum of 70 minutes could be
spent on the programming task. After the programming
task was completed, or 70 minutes were exhausted
(whichever came first), programmers were asked to
continue to the next step.

In this step, programmers were given a laptop with
an Ubuntu virtual machine. Programmers were re-
quired to use the provided laptop and virtual machine

Author Preprint

http://nanoxml.sourceforge.net/orig/
http://jexcelapi.sourceforge.net/
http://www.jgrapht.org/

4

TABLE 1
List of API Libraries Used in Our Open Source Study and the Programming Tasks Given to the Participants

Library Programming Task LOC # of classes # of classes
evaluated

NanoXML Populate a given data structure with the contents of
an XML file. 9,932 29 21

JExcelAPI

Create a Microsoft Excel workbook with two blank
worksheets. Modify the API Library’s worksheet
creation to print the message ”This worksheet was
created by JExcelAPI” on all worksheets created
using JExcelAPI.

79,153 511 52

JGraphT
Build a graph using JGraphT that matches a given
graph image. Perform a depth-first-search on that
graph to find a particular element.

29,988 256 209

to complete the task. The virtual machine was run using
Oracle VM Virtual Box inside of Windows XP. This
was done to ensure a consistent start state for each
participant.

In each start state, the evaluated API Library had
been loaded into an Eclipse workspace. Participants
had the Javadocs for the project on the desktop of
the virtual machine. Participants were instructed, in
person, what their programming task was (the details
about each task in Table 1). Each participant was shown
where to find the Javadocs for the API Library. Partic-
ipants were asked to use the Javadocs when learning
the system to perform the programming task. The mon-
itor was recorded using screen capture software while
the participants completed the programming task. This
allowed us to see how the programmer learned the
system, and where in the API library’s Javadocs they
looked. After the participant completed the program-
ming task or exhausted 70 minutes, whichever came
first, they were directed to the survey.

2) Fill the survey. Each participant is given a survey,
which asks the participant to identify how important
it is to document certain methods in the API library.

The survey contained every method in the API
source code, but the survey would present a method
at a time to the participant. In addition to the method
name, participants were given a link to the location
in source code of the method. Participants were then
asked to rate how important they felt the method was to
document for program comprehension irrespective of
existing documentation. Participants could answer that
they believed the method was “not important to doc-
ument,” “somewhat important to document,” “impor-
tant to document,” or “very important to document.”

A screenshot of the survey is shown in Figure 2.
Participants were told to evaluate the importance to
document a method with respect to program compre-
hension. The participants were told to consider how
important the method was to document for the overall
API library, not just in relation to the programming task.

The order of the methods was randomized. Partici-
pants spent at least 20 minutes on the survey. If the par-
ticipant had completed the programming task in less

TABLE 2
The number of classes evaluated by each participant in open source

studies

Library Participant Id # of methods # of classes
evaluated evaluated

NanoXML Participant 1 65 17
NanoXML Participant 2 305 21
NanoXML Participant 3 165 21
JExcelAPI Participant 4 433 52
JExcelAPI Participant 5 435 52
JExcelAPI Participant 6 61 23

JGraphT Participant 7 135 88
JGraphT Participant 8 623 200
JGraphT Participant 9 274 145

than 70 minutes, they were asked to spend more time
on the survey up to a total of 90 minutes completing
the study. Because the survey asked programmers to
score every method in an API Library, no programmer
completely finished the survey before the 90 minute
time limit. We kept what survey data had been collected
up to that point. This upper limit was put in place to
control for participant fatigue. The number of scored
classes in each project is listed in Table 1. The number
of classes each participant evaluated is listed in Table 2.

4.1.4 Data Collection
We assign each participant response a numeric value. For
example, if a participant in our open source study rated a
method as “very important to document”, we assigned that
user response the score of 4. “Important to document” is
assigned the score 3, “Somewhat important to document”
is assigned the 2, and “Not important to document” is
assigned the score of 1. This is an intuitive labeling for a
Likert scale. We then assign to each method the average of
all participant scores. In this dataset, a method with a higher
average score is considered more important to document,
and therefore a higher priority. A method with a lower
average score is considered less important to document, and
therefore less of a priority.

After the methods are scored, we assign to each class the
average of the average scores for each scored method in the
class. If a method was not rated by any participant, it did not

Author Preprint

5

Fig. 2. A screenshot from our survey. Each page of the survey asked programmers to rate 5 questions. Only 3 are shown in this image due to space
limitations. The order of the methods was randomized for each participant, and no methods were shown to the same programmer twice.

factor into its class’s average. If no methods in a class were
rated by participants, then that class was not included in
the resulting dataset. A class with a higher average score is
considered higher-priority to document, while a class with
a lower average is considered lower-priority to document.

4.2 Closed Source Study
We performed a second user study at ABB Corporate Re-
search. The closed source study focused on professional pro-
grammers evaluating proprietary source code. In the closed
source study, participants were given two Java projects
developed and maintained by ABB.

4.2.1 Closed Source Projects
Due to the proprietary nature of these projects, we will refer
to them as Project B and Project D. These projects are both
larger than 300 classes and over 2500 methods. Project B was
a library component of another application, while Project D
was a standalone application.

4.2.2 Participants
We had six participants in this study. All six participants
were professional programmers at ABB Corporate Research.
Five of the six participants evaluated Project B. None of
the five participants had previous programming experience
with Project B. All six participants evaluated Project D.
Four of the six participants had previous programming
experience with Project D.

4.2.3 Evaluation Process
Unlike the process in our open source study, we did not ask
the participants to do programming tasks before they fill the
survey. We decided to not use a programming task due to
limits of time and access. Additionally, many programmers
had already had prior programming experience with one of
the projects. The programmers were also familiar with the

Fig. 3. A screenshot from our survey in closed source projects. Each
page of the survey asked programmers to rate the importance of docu-
menting a class. We removed the class names and Package names due
to the proprietary nature.

domain and purpose of each project making a programming
task unnecessary.

For each project, each participant was given 30 minutes
to complete a survey, for a total of 60 minutes. This survey
asked participants to evaluate the importance of Java classes
to be documented in each project. We chose to analyze
classes in the closed source study, rather than methods,
due to limited time with the professional programmers. A
screenshot of the survey is shown in Figure 3.

In the survey, participants could initially choose a pack-
age to evaluate. This was allowed so participants could
evaluate packages they had more experience working with.
After selecting a package, participants were given a random
selection of five classes from the package to evaluate. All
programmers who selected a package were initially shown
the same five classes. This was to ensure we had multiple
participants evaluating the same classes to evaluate the

Author Preprint

6

TABLE 3
The number of classes evaluated by each participant in closed source

studies

Library Participant Id # of classes evaluated

Project B Participant 1 14
Project B Participant 2 12
Project B Participant 3 8
Project B Participant 4 0
Project B Participant 5 10
Project B Participant 6 10
Project D Participant 1 27
Project D Participant 2 39
Project D Participant 3 3
Project D Participant 4 22
Project D Participant 5 6
Project D Participant 6 5

consistency of how participants view importance. After
evaluating these five classes, the participant was given the
option to go to a different package, or continue rating classes
from the selected package.

For each class, the programmer was asked, ”How im-
portant do you believe it is to document Class relative to
other classes in the package?”, where Class is the name of
the Java class. The programmer could answer “dramatically
more important,” “somewhat more important,” “about the
same,” “somewhat less important,” or “dramatically less
important.” Programmers were instructed to consider doc-
umentation importance as it relates to program comprehen-
sion. Then, we have an optional text box for the programmer
to enter any comment about the class. After 60 minutes had
passed, programmers ended the study. We listed the number
of classes each participant evaluated in Table 3.

4.2.4 Data Collection

We interpret the responses from participants in our closed
source user study by assigning numeric values to each
class based on participant responses. If a participant said a
class was “dramatically more important” to document, that
response was assigned a value of 5. Likewise, if a participant
said a class was “dramatically less important” to document,
that response was assigned a value of 1. Intermediate values
were assigned corresponding numbers in turn. Each class’s
importance was the average of all participant evaluations of
that class. If a class was not evaluated by any participant, it
was not included in the dataset.

4.3 Comparison between the Two Studies

In this subsection, we compare the settings of the open and
closed source studies in Sections 4.1 and 4.2. Table 4 shows
the major differences between the two studies. First, because
the participants in the closed source study are familiar with
the evaluated projects, we did not ask the participants to
complete a programming task before they took the survey.

Second, we decided to ask participants to rate methods
in the open source study because the participants were not
familiar with the open source projects and it was easier for
the participants to rate smaller components like methods
instead of classes. Because the participants in the closed
source study are familiar with the projects and we had

TABLE 4
Settings of the Open and Closed Source Studies

Setting Open Source Closed Source
Study Study

Having programming tasks Yes Nobefore the surveys

Assessed objects Methods Classes

Choice number 4 5for each question

Likert scale labeling 1 to 4 1 to 5

Optional comments No Yes

limited time with the professional programmers, we asked
them to rate classes directly.

Third, we had two different Likert scales in the studies.
The difference does not affect our evaluations later, because
our evaluations for the two study are independent.

Finally, we did not have comment boxes in the open
source study so that the participants could rate as many
methods as they can. To complement the open source study,
we added comment boxes in the closed source study.

5 FEATURES

In this section, we describe three types of the features we
collect for Java classes. The first type is the static source
code attributes. The second type is the textual comparison
attributes. And the third type is the vector-space model
(VSM) approach, that is, tf/idf (Term Frequency times In-
verse Document Frequency) for each word in the source
code. All the attributes in the first and the second groups
are listed in Table 5. We will discuss all the features in the
following subsections.

5.1 Static Source Code Attributes
One set of the attributes we examine are attributes collected
from static source code analysis. Static source code analysis
is examining software by extracting characteristics from
source code. This differs from dynamic source code analysis,
which is examining software by executing it and observing
the behavior. Binkley [19] describes static source code anal-
ysis as parsing the source code. Static source code analysis
has been used in a variety of software engineering fields, in-
cluding defect prediction [20], [21], [22], clone detection [23],
and feature location [24] among many more applications.

In this paper, we consider three types of static source
code attributes: size attributes, complexity attributes, and
object-oriented attributes of Java code. Besides the attributes
of the three types, we also consider %Comments, which is
the number of lines that have comments divided by the total
number of lines in a class.

5.1.1 Size attributes
Size attributes are static source code metrics that refer to the
size of a section of source code. Many size attributes center
around the number of lines of code in source code. However,
there are multiple ways to measure lines of code in source
code. In this paper, we consider two size attributes: lines of

Author Preprint

7

code (LOC) and number of statements (Statements). LOC
is the number of lines in a Java class, including the com-
ments but excluding the empty lines. Statements attribute is
the number of executable lines of code in a Java class.

5.1.2 Complexity attributes
Complexity attributes are static metrics that measure the
complexity of software. In this paper, we included 11 com-
plexity attributes. Attribute %Branch is the percentage of
the branch statements in a class. The branch statements in-
cludes if, else, for, do,while, break, continue, switch,
case, default, try, catch, finally, and throw.

Attribute Calls is the number of method calls in a class.
Calls per Statement is the number of calls in a class divided
by the number of the statements in the same class. Methods
per Class is the number of methods in a class. Statements
per Method is the total statement count divided by the total
method count in a class.

One popular complexity measurement is McCabe’s cy-
clomatic complexity [25]. McCabe’s cyclomatic complexity
is based on control flow graphs. A control flow graph is a di-
rected graph that represents statements in a section of source
code. Each statement is a node. Edges represent possible
control flow patterns. For a method, Cyclomatic complexity
is calculated using v(G) = e− n+2, where e is the number
of edges in the flow graph, and n is the number of nodes
in the flow graph. Cylcomatic complexity has been found to
be a good predictor of effort estimation [26] and software
defects [27], [20]. It should be noted, however, that some
researchers disagree that cyclomatic complexity is useful
for defect prediction [28], [29]. We consider attributes Avg.
Complexity, Max Complexity, and Weighted Methods per
Class (WMC) of a class, which are the arithmetic average,
the max value, and the sum of all the Cyclomatic complexity
values measured for all the methods in the class.

Additionally, we consider the attributes about branch
depths. For a statement, we measure the depth of the nested
branch the statement is in. For example, in code if(...){
if(...){ s1; }}, statement s1 has the branch depth of
two. Attribute Avg. Depth is the average branch depth of
all the statements in a class. And attribute Max Depth is the
maximum branch depth found in a class.

The last attribute is Number of Class Fields (NOF),
which is the number of fields of a class.

5.1.3 Object Oriented attributes
Some Object Oriented (OO) attributes relate to the inheri-
tance structure of object oriented languages. Chidamber and
Kemerer [30] proposed several OO metrics to analyze the
structure of object oriented programs. We consider five OO
attributes in this paper.

The first attribute is Depth of Inheritance Tree (DIT),
which refers to the number of ancestor classes a given
class has. The more ancestor classes a given class has, the
higher the potential complexity. Thus, a large DIT can sug-
gest higher complexity [22]. Second, we consider attribute
Number of Sub-Classes (NSC) (also referred to as Number
of Children (NOC)) is the number of children a class has.
A class with a large number of subordinate classes may
need to be tested more thoroughly because of its broad
impact [30].

The third attribute is Lack of Cohesion of Methods
(LCOM), which is a measurement of the cohesiveness of a
class. This attribute is calculated with the Henderson-Sellers
method [31], which is

LCOMHenderson = (

∑
f∈F m(f)

|F |
−m)× 1

1−m
(1)

where F is the set of all the fields in the class; m(f) is the
number of methods accessing the field f ;m is the number of
the methods. A low LCOM value indicates a cohesive class,
and a LCOM value close to 1 suggests that the class lack
cohesion.

The fourth attribute is NORM which is the number of
the methods in a class that are overriden by its child classes.
Finally, we consider attribtue Abstract, which is whether a
class is abstract or not.

5.1.4 Extraction Method
To collect source code attributes, we use two tools: Source-
Monitor and Metrics. SourceMonitor2 is a standalone pro-
gram that analyses Java source code. SourceMonitor can
produce metrics related to the size of the Java source code,
such as lines of code and number of statements. Addition-
ally, SourceMonitor can calculate the McCabe cyclomatic
complexity of source code. Metrics3 is an Eclipse plug-in
for performing static analysis of source code. Metrics can
determine various object-orientation related metrics, such
as those proposed by Chidamber and Kemerer [30].

5.2 Textual Comparison Attributes

Textual analysis, with relation to source code, involves ex-
tracting semantic information from source code identifier
names. Identifier names are a powerful tool for developers
to communicate to program readers [32], [33]. Our previous
work, McBurney, et al. [34], investigated the textual sim-
ilarity between source code and summaries of that source
code. Our work found that readers perceive summaries that
are more similar to source code as more accurate than sum-
maries that are textually dissimilar. In this paper, we con-
sider two textual analysis attributes: Overlap and STASIS.
We apply these attributes by comparing Java source code
to the homepage of a project website. It should be noted
that this technique is, in effect, a type of static source code
attribute. However, in the scope of this paper, we consider
this technique distinct from the extraction of static source
code attributes. This is because the goal of this approach is
to consider keyword similarity, rather than the structure of
the code.

5.2.1 Overlap
Overlap is a textual similarity metric that compares the
literal representation of two bodies of text. To calculate
Overlap, each body of text is treated as a set of words.
Overlap is equal to the percentage of shared words between
these two sets divided by the the total number of unique

2. http://www.campwoodsw.com/sourcemonitor.html
3. http://metrics.sourceforge.net/

Author Preprint

http://www.campwoodsw.com/sourcemonitor.html
http://metrics.sourceforge.net/

8

words in both sets combined. To calculate Overlap of text
body A and text body B, we have the formula:

|WT (A)
⋂
WT (B)|

|WT (A)
⋃
WT (B)|

(2)

where WT (A) and WT (B) are the set of unique words
of A and B.

5.2.2 STASIS
STASIS, developed by Li et. al [35], is a semantic similarity
metric. Semantic similarity refers to the similarity between
the meanings of two bodies of text. STASIS contrasts with
Overlap, as Overlap does not consider semantic informa-
tion. STASIS accounts for the semantic meanings of words
by leveraging WordNet [36]. WordNet [36] is a hierarchical
database of English words organized into sets of synonyms,
or synsets. In WordNet, words in the same synset are very
similar, and synsets that are close to each other in the
hierarchical structure are more similar. STASIS uses this to
calculate the similarity of two words.

To calculate the similarity between two text bodies, given
two text bodies A and B, we first get a set of all the unique
words W from A and B. Then, we create a vector of the size
of W , which is to represent A. Each element in the vectors
corresponds to a word in W , and the initial values for all
the elements are zeros. Then, for each word in A, we assign
one to the corresponding element of the vector ofA; for each
word not inA (but inB), we calculate the similarity between
the word and every word in A, and we assign the highest
similarity score to the corresponding element of the vector
of A. Then, we get the vector for B in a same way. Finally,
the similarity between A and B is the cosine similarity of
the two vectors as follows:

VA · VB
‖VA‖‖VB‖

(3)

where VA is the vector for A and VB is the vector for B.
STASIS can also consider word order similarity. How-

ever, we do not consider word order in this work. This
is because source code word order is often unrelated to
summary word order [34].

5.2.3 Extraction Method
We used words from only the main page of the project
website (see Appendix A for details.)

We acknowledge that a project website may not be
suitable in all circumstances. For instance, if the website is
out of date, or non-existent, then it would not be useful
for this approach. However, in our study, we found each
project’s website was suitable in our test programs. The
project website homepage was selected, because all the test
projects had a publicly available homepage. The homepage
gives a broad overview of the purpose and features of the
software.

We pre-processed each Java class file by splitting on and
removing all special characters. Then, we kept two sets of
words for each class file: one with camel case splitting,
the other without camel case splitting. Existing comments
(including JavaDoc comments) are included as part of the
source file.

We calculated Overlap and STASIS for both sets of words
(with or without camel case splitting, but always with
splitting on special characters). STASIS is configured to not
consider word order. The result of this analysis is a set of
scores between zero and one, where a larger similarity score
means the source code is more similar to the project website.
The implementation of STASIS is accessible at http://www.
cis.upenn.edu/∼paulmcb/research/doceffort/stasis.py

5.3 Textual VSM and Tf/idf
Our final source code analysis approach uses a vector space
model (VSM) [37] to classify Java class files as either im-
portant or not important. The purpose of this approach is
to evaluate the effectiveness of textual analysis in automatic
documentation prioritization without the benefit of a man-
ually written document, such as a project website.

First, we extracted keywords from all the Java files by
removing all special characters and numbers, then splitting
on camel case. Additionally, we consider the class files’
words both with stemming and without stemming. Second,
we converted the words into a vector space model using
term frequency/inverse document frequency (tf/idf), which
is done by Weka’s StringToWordVector filter. Tf/idf is
an approach for determining how important a term is by
considering how much the term appears in the document
divided by how many documents the term appears in the
corpus. In this way, a word that appears frequently in
one document, and is very rare outside the document, is
important to that document. So in the VSM approach, we
had an attribute for each word in all the class files.

6 MODEL AND TRAINING

We built a classification model approach to identify whether
or not a given Java class was important to document
based on the features we defined in Section 5. We de-
fine “important” as being in the top 25% in our gold set
for a Java project. While we regret that this threshold of
25% appears arbitrary, given the preliminary nature of this
study, a percentage threshold is our best option. The other
possibility would have been to use an absolute threshold.
However, this would require making assumptions about
some minimal “importance” score. Given the foundational
and preliminary nature of this study, we do not feel this
would be appropriate. A threshold of 25% was specifically
chosen because it gave less noise than lower percentages,
but was not as coarse as higher percentages.

To build the classification model, we created an artificial
neural network (ANN) [38] by using Neuroph4. We selected
ANN in our study for two reasons. First, of available classifi-
cation techniques, ANN performed the best in pilot testing.
Second, ANN is widely used in the current literature to
address similar problems [39], [40].

We trained an ANN model for each open/closed source
project and each of the four group of the features, which
are 1) static source code attributes, 2) textual comparison
attributes, 3) the VSM approach, and 4) a combination of
1) and 2). For each ANN model, we a performed 10-fold
cross-validation for evaluation.

4. http://neuroph.sourceforge.net/

Author Preprint

http://www.cis.upenn.edu/~paulmcb/research/doceffort/stasis.py
http://www.cis.upenn.edu/~paulmcb/research/doceffort/stasis.py
http://neuroph.sourceforge.net/

9

TABLE 5
List of Static Source Code Attributes and Textual Comparison Attributes in Our Approach

Type Attribute Description Source

Static

Size LOC Lines of code (including comments, excluding empty lines)

SourceMonitor

Statements Executable Lines of Code

Complexity

%Branch Percentage of statements that branch
Calls Number of calls
Calls Per Statement Number of calls / number of statements
Methods Per Class Number of methods per class
Statements Per Method Average of statements per method
Avg. Depth Average branch depth of statements
Max Depth Maximum branch depth of statements
Avg. Complexity Average McCabe Cyclomatic Complexity of methods
Max Complexity Maximum McCabe Cyclomatic Complexity of methods
WMC Weighted methods per class

Metrics**
NOF Number of class fields

OO*

DIT Depth of inheritance tree

MetricsNSC Number of child classes
LCOM Lack of cohesion of methods
NORM Number of overriden methods
Abstract Whether or not the class is abstract

Others %Comments Percentage of lines of code with comments SourceMonitor

Textual Comparison

Class Appearance Whether or not the class name appears

Scripts***

Package Appearance Whether or not the package name appears
Combination Appearance Whether or not package and class name appears
Overlap w/ Splitting Literal similarity with splitting on camel case.
Overlap w/o splitting Literal similarity without splitting on camel case.
STASIS w/ splitting Semantic similarity with splitting on camel case.
STASIS w/o splitting Semantic similarity without splitting on camel case.

* OO: Object Oriented attributes in Section 5.1.
** Metrics is an Eclipse plugin.
*** We wrote Python scripts to calculate the textual comparison attributes. The script for calculating STASIS is accessible at

http://www.cis.upenn.edu/∼paulmcb/research/doceffort/stasis.py

6.1 Parameters

Parameter setting influences significantly the performance
of a machine learning algorithm [41]. Within ANN, we used
two hidden layers. There was a significant performance
increase between 1 hidden layer and 2 hidden layers. How-
ever, increasing the number of hidden layers past 2 did not
yield further improvements.

6.2 Parameter Tuning

We used a trial-and-error methodology to tune parameters,
where several parameter values are tested and compared.
For each couple (algorithm, software system), we use the
trial and error method in order to obtain a good param-
eter configuration. Each ANN is executed 30 times with
different configurations and then comparison between the
configurations is done using the Wilcoxon test [42] with
a 99% confidence level α (= 1%). The Wilcoxon signed-
rank test is a non-parametric statistical hypothesis test used
when comparing two related samples to verify whether
their population mean-ranks differ or not. The latter verifies
the null hypothesis H0 that the obtained results of two
algorithms are samples from continuous distributions with
equal medians. The alternative hypothesis H1 is that the
results of two algorithms are not samples from continu-
ous distributions with equal medians. The p-value of the
Wilcoxon test corresponds to the probability of rejecting the
null hypothesis H0 while it is true (type I error). A p-value
that is less than or equal to α (≤ 0.01) means that we accept
H1, and we reject H0. However, a p-value that is strictly
greater than α (> 0.01) means the opposite. In this way, we
could decide whether the outperformance of each algorithm

over one of each of the other algorithms (or the opposite) is
statistically significant or just a random result. All the results
presented in this experiment were statistically significant on
30 independent runs using the Wilcoxon rank sum test such
that α (< 1%).

It is important to note that all heuristic algorithms have
the same termination criterion for each experiment (same
number of evaluations) in order to ensure fairness of com-
parisons. Based on the trial and error method, we used a
maximum number of iterations of 1000 runs, the learning
rate was 0.25, the number of hidden nodes was 10 and a
feed-forward fully connected architecture.

6.3 Feature Selection

Due to the number of static source code attributes we con-
sidered, we performed feature selection using a Chi-Squared
test to reduce the number of features. Other techniques at
this time were not tried. A full study to determine the best
feature selection approach is beyond the scope of this paper.
Given the small number of textual comparison attributes,
we thought that the risk of greater overfitting and model
uncertainty outweighed the potential benefit of a reduced
model (via feature selection). Furthermore, we did not per-
form feature selection on the combination of static source
code attributes and textual comparison attributes, because
this combination is compared with the textual comparison
attributes, on which we did not perform feature selection.
For the VSM approach, this data is more complicated so we
did not perform the feature selection.

Author Preprint

http://www.cis.upenn.edu/~paulmcb/research/doceffort/stasis.py

10

7 EVALUATION SETTING

In this section, we describe the setting of our evaluation,
in which we evaluate the models with different candidate
features (Section 6). Our evaluation is to determine whether
static source analysis can be used to automatically detect
sections of source code with a high documentation priority.
The classification models predict whether an input Java
class is important. We use the granularity of class, because
we found methods to be too noisy. Additionally, using class
was the best option to ensure the broadest coverage given
the limitations of time in our study.

We evaluate the classification models by assessing the
effectiveness and the ranking relevance of each model. First,
we compare different models to determine the effectiveness
of different features in predicting documentation priority. If
the model with some candidate features performs better in
our study, we argue that the features in this model are better
for predicting documentation priority.

Second, we obtained a ranking from each model and
evaluated the ranking relevance for each model. Although
our ANN models are binary classifiers, given a Java class,
the models can output a value between 0 and 1. These values
indicate the importance of the classes, so a ranking of the
classes can be generated by comparing the values.

7.1 Research Questions

The goal of this evaluation is to determine the effectiveness
of source code attributes in predicting documentation effort
priority. We ask the following research questions to assess
the effectiveness and the ranking relevance of each model.

Assessing Effectiveness. To assess effectiveness, we
have the following three research questions:

RQ1 To what degree do static source code attributes differ
in prioritization effectiveness with textual comparison
attributes?

RQ2 To what degree do the combination of static source
code attributes and textual comparison attributes differ
in prioritization effectiveness with only textual compar-
ison attributes?

RQ3 To what degree do static source code attributes
and/or textual comparison attributes differ in priori-
tization effectiveness with textual VSM?

In these research questions, prioritization effectiveness
refers to whether important Java classes are correctly pre-
dicted by a given classification model. We measure ef-
fectiveness by considering the precision and recall of our
classification models with respect to classes that are deemed
important. The purpose of RQ1 is to determine whether a
classification model using only static source code attributes
or a classification model using only textual comparison at-
tributes performs better. The purpose ofRQ2 is to determine
if static source code attributes add meaningful informa-
tion to textual comparison attributes. If static and textual
attributes in combination perform better than just textual
attributes, it would suggest that collecting and learning on
a combination of static and textual attributes would be an
ideal approach. The purpose of RQ3 is to compare the re-
sults of the classifier based on a textual VSM approach with

those from the combination of static source code attributes
and textual comparison information.

Ranking Relevance. To assess the ranking relevance of
our models, we ask the following three research questions:
RQ4 To what degree do static source code attributes

differ in ranking relevance with textual comparison
attributes?

RQ5 To what degree do static source code attributes and
textual comparison attributes differ in ranking rele-
vance with only textual comparison attributes?

RQ6 To what degree do static source code attributes
and/or textual comparison attributes differ in ranking
relevance with only textual VSM?

In these research questions, ranking relevance refers to
the accuracy, precision, and recall of the top k% classes.
Accuracy refers to the percentage of classes for which we
make at least one correct recommendation in the top k%
ranked classes (labeled as Accuracy@k). Precision refers to
the percentage of classes in the top k% ranked-list generated
by our models that are in the top k% most important classes
in our gold set (labeled as Precision@k). Recall refers to
the percentage of classes in the top k% most important
classes in our gold set that are in the top k% ranked-
list generated by our models (labeled as Recall@k). These
research questions are important to consider, as they will
allow us to see the trade-off between accuracy and precision
when k increases. We note that we did not use AUROC
as one of our measures, because our goal is not to pick
a definitive winner. Instead, as our study is foundational
and preliminary, we are trying to understand the relative
quality and performance characteristics for our models. So
we used precision, recall, and accuracy to understand the
relative performance and potential tradeoffs.

7.2 Reproducibility

To ensure reproducibility, we have made anonymous survey
and research data from our open source study available via
an online appendix:
http://www.cis.upenn.edu/∼paulmcb/research/doceffort/

Additionally, we have made the virtual machines for
the starting state of our programming tasks available upon
request. Because of the proprietary nature of our closed
source study, we cannot make that data publicly available.

8 RESULTS

In this section, we discuss the results of predicting docu-
mentation priority on data collected from our models. We
used 10-fold cross validation to evaluate the models. Figure
4 summarizes our findings regarding the correctness of the
results generated by the models with the four groups of
the features. The VSM approach correctly recommended the
important classes for documentation with more than 80%
of precision and recall on the five systems. This approach
performed the best overall. The average precision and recall
of the classification models using the textual comparison
attributes is around 75%. The textual comparison attributes
performed very closely with the VSM approach. Surpris-
ingly, the static source code attributes resulted in the lowest
precision and recall score with an average for both lower

Author Preprint

http://www.cis.upenn.edu/~paulmcb/research/doceffort/

11

Fig. 4. These two column graphs show the average recall (top) and the
average precision (bottom) for each approach over a 10-fold cross vali-
dation using ANN. The two textual approaches consistently outperform
the static and static+textual approach. ABB-1 refers to the closed source
Project B, while ABB-2 refers to Project D.

than 50%. The performance of the hybrid textual compar-
ison and static source code attributes was lower than the
VSM approach and the textual comparison attributes, but
higher than the static source code attributes. An interesting
observation is that the performance of the VSM approach in
terms of precision and recall appears to be independent of
the size of the system and the number of expected classes.

Using these results, we can answer RQ1. We have found
that using static source code attributes as features for a
predictive model resulted in substantially lower precision
and recall than using either textual comparision attributes
or the VSM approach. Further, we can answer RQ2 and
RQ3 by noting that the combination of the static source
code attributes and the textual comparison attributes was
outperformed by textual comparision attributes only and
the VSM approach.

Figures 5 through 7 are used to evaluate the quality
of the class importance ranking proposed by the different
models. To this end, we present the Precision@k, Recall@k
and Accuracy@k results for the models, with k ranging from
5% to 50% of top classes in the ranking. In this paper, we
show six representative graphs. However, the other graphs
are available in our online appendix (see Section 7.2). Based
on all the measures, the VSM approach achieves the best
results on all five projects. For example, on the JGraphT our
VSM approach achieved Accuracy@k of 92%, 88%, 84%, and
79% for k = 10, 20, 30, 40 and 50 respectively. The same
observation is valid also for the precision@k and recall@k
results. That is to say that most of important classes are
located in the top of the list of recommended classes for
documentation using the VSM approach. Thus, the ranking
may speed-up the process of locating important classes
to document by programmers. Using this information, we

Fig. 5. These two line graphs show the precision where the top k
percent of classes ranked by our user study is considered important
to document. The graphs represent learning on NanoXML (top) and the
closed-source Project B (bottom). We limit showing only two graphs for
this project, however other graphs exhibited similar behavior and are
available in our online appendix.

answer RQ4 and RQ5 by noting that the static code source
code attributes, with or without the textual comparison
attributes, resulted in poorer documentation effort priori-
tization than the textual comparison attributes and the VSM
approach. The answer to RQ6 is that the VSM approach
outperformed all other attributes over our data. The impli-
cations of these answers are discussed in Section 11.

9 COMMENTS FROM EVALUATORS

In this section, we discuss the findings from the comments
made by the participants in the closed source study. The par-
ticipants in the closed source study were asked to provide
commentsp justifying the level of importance they assigned
to each Java class. We chose to add optional comment boxes
in our closed source study due to the participants in our
closed source study being professional programmers with,
on average, more programming experience than those in
our open source study. Further, the open-source study was
much longer in terms of time, and we were concerned about
fatigues. Due to the fact that the closed source study used
proprietary source code, names of classes, methods, and
variables are redacted. Additionally, we cannot provide any
code examples.

Among the comments, we found a disagreement over
the importance of document interfaces. Several study par-
ticipants said that implementation should be documented.

Author Preprint

12

Fig. 6. These two line graphs show the recall where the top k percent of
classes ranked by our user study is considered important to document.
The graph represents learning on the closed-source JExcelAPI (top) and
the closed-source Project D (bottom). We limit showing only two graphs
for this project, however other graphs exhibited similar behavior and are
available in our online appendix.

A sample of related comments from different participants
follow:
• “Interfaces typically need pretty good documentation

so you know what the expectations are.”
• “I like to have interfaces well-documented...”
• “This class is an interface- so I think it’s very important

to document it...”
However, one participant would note “interface” in the

comments when a class was an interface, and rate the
class as “Somewhat less important to document” relative to
other classes in the package. This dissent was less common,
but it notes a disagreement in opinion on what should be
documented in a professional environment.

Several participants state that when a class contained
methods that were always or almost always simple or
obvious, it was less important to document. A sample of
comments follows:
• “Pretty straightforward implementation of a known

pattern- with some adaptations...less important to doc-
ument.”

• “Seems straightforward- so less documentation
needed.”

• “Simple getters and setters ... documentation is some-
what redundant.”

This is interesting, because simplicity, especially in the
form of “simple getters and setters”, should be apparent
in metrics such as average McCabe Cyclomatic Complex-

Fig. 7. These two line graphs show the accuracy where the top k
percent of classes ranked by our user study is considered important to
document. The top graph represents the open source project JGraphT,
and the bottom graph represents the closed-source Project D. We only
show these two graphs, however other graphs exhibited similar behavior
and are available in our online appendix.

ity [25] of methods in the class. However, our machine learn-
ing suggests that static metrics, including average method
complexity per class, are not high-quality predictors of
documentation importance. This is complicated further by
several comments reference complex methods and control
flow as important to document:
• “Great method documentation- but control flow some-

times needs better documentation”
• “Name of a method in the class has a significant amount

of undocumented logic and control code.”
• “...more complex methods may need more documenta-

tion.”
It is very surprising that participants, in their comments,

suggest that source code complexity should indicate docu-
mentation importance. However, this directly conflicts with
our quantitative findings. We do not have a clear explana-
tion for this contradiction. It is possible that programmers
attribute complexity to documentation importance out of
habit or training, but ultimately judge importance for pro-
gram comprehension based on the high-level goals of a
given class. This possibility will need to be the subject of
a more focused future study. Due to the proprietary nature
of the source code, we cannot show the source code that
generated these comments, nor can we discuss it in any
detail.

Several participants made reference to the identifiers, or
names, of methods and variables in the class.

Author Preprint

13

• “Relatively little logic- and the method names are fairly
explanatory.”

• “It’s always good to document classes that hold data-
which is what this class seems to be. However- they
don’t need a ton of documentation because they are
usually easy-to-understand (e.g. I understand what the
field name of a variable likely contains because of its
name).”

• “Because abbreviations are used...it is difficult to under-
stand this class.”

The importance of identifiers has been noted by Deis-
senbock and Pizka [43] as well as by Lawrie et al. [44],
[32]. Bulter et al. [45], [46] have connected flaws in naming
conventions with poorer code quality. The comments by our
participants seem to show agreement with the literature.
Additionally, these comments help to validate that useful-
ness of our textual based machine learning approaches at
predicting documentation importance.

10 THREATS TO VALIDITY

As with any software engineering user study, a key threat
to validity lies in the selected participants. All programmers
bring their own experience and biases into any study. To
mitigate this threat in our open source study, we ensured no
programmer had prior experience with their assigned API
library. Further, the participants come from several different
research backgrounds, giving us a diversity of views. We
felt that it was important that no participant have prior
experience, as we wanted to monitor how a programmer
learns a new API library. However, being unfamiliar with a
system can create a bias from ignorance. To mitigate this
threat, in our closed-source study, the participants were
familiar with the projects. Additionally, several participants
had programming experience on one project.

Another source of threat to validity comes from studying
exclusively API libraries in our open source study. We
chose to study API libraries specifically, as these were easily
adaptable to programming tasks. Because the participants
were not experienced with their given API libraries before
the study, we had to keep the tasks small enough to be
feasibly completed in the allotted time. Extending the time
to perform more advanced tasks would have resulted in
a fatigue factor that we wanted to avoid, as the survey
completed after the programming task was the primary
means of data collection. Using different API libraries, or
using Java programs other than API libraries, may result in
different conclusions.

A third threat of validity emerges from having different
levels of granularity in our studies. Due to time limitations,
we were unable to have the developers in our closed-
source study evaluate projects at the method level, and
instead limited the evaluation to class level. We note that
while this introduces a bias, our results in Section 8 were
remarkably consistent in both settings. We believe that the
results being so consistent actually strengthens the gener-
ality of our approach. Thus, it could be also considered as
an advantage of the approach since programmers may have
different preferences as to whether to document at the class
or method level.

A fourth threat to validity comes from the use of a
programming task to acquaint the participants with the
system in our open source study. The programming task
given could bias the participants towards thinking certain
methods or classes are disproportionately more important
because the given task required the programmer to use
it. The decision to use a programming task was made
because we felt that there is a greater threat to validity
by asking programmers unfamiliar with a given library
to determine what in the library is important. By giving
a small programming task, we ensure that programmers
have become at least somewhat familiar with the system
they are evaluating. To mitigate this threat in our overall
paper, our closed-source study has no programming task,
and relies upon professional experience with a given piece
of software, or a familiarity with its purpose, to avoid
biasing the participants. This can come with its own threats
to validity, as programmers may be biased by previous
experience working on specific sections of source code.

A fifth threat to validity is that some classes/methods
were evaluated by only one participant (both in open source
study and closed study). Therefore, there is no consensus on
the importance of these classes/methods. This is a design
decision we made in our studies, because we want to
maximize the number of the evaluated classes/methods.

A sixth threat to validity comes from the Likert scale
we used in the surveys. Likert scales produce ordinal data,
but we assigned integer values to the scales and computed
average of the values, which may introduce a bias to the re-
sults [47], [48], [49]. We computed averages in two cases. In
the first case, we used the average as a proxy for consensus
when several participants rated the same component. In the
second case (which occurred in only the open source study),
we computed the average of the methods’ rates as the rate
of a class. We note that we used the rating to partition the
classes into two groups: top 25% and bottom 75%. We then
claim that classes in the top 25% are more important to
document than the classes in the bottom 75%. Specifically,
we do not claim that any particular class in the top 25%
is more important to document than any other class in the
top 25%. Although this use of averages results in a threat
to validity, we believe the threat to be minor. In particular,
we acknowledge that there may be little difference in impor-
tance among the classes in the vicinity of the 25% threshold.
To be safe, we included ties at the 25% to mitigate our threat.

The parameter tuning of the model building algorithm
in our experiments creates an internal threat in that we
need to evaluate its impact on the obtained results in our
future work. In our current experiments, we used a trial-
and-error strategy on over 30 runs for each system. Another
internal threat is related to the possible correlation between
some features used in our machine learning model. We
are planning to use a dimensionality reduction technique
to possibly reduce the number of features of our model.
Finally, we considered each of the different features with
equal importance. However, some attributes are possibly
more important than others when ranking documentation.
Our plan for future work is to empirically evaluate the
importance of the used metrics to find the best weights to
assign for the features using a learning-to-rank technique.

Author Preprint

14

11 DISCUSSION

Our paper explores the idea of prioritizing documenta-
tion effort using static source code analysis and textual
evaluation. Surprisingly, we found that static source code
attributes are a poor predictor of documentation effort pri-
ority. This is surprising given that static source code analysis
has been used to find “important” sections of source code
for program comprehension [9], [10] and for finding source
code examples for documentation [14]. Given how poorly
static source code attributes performed across all five source
code projects in our study, we are pessimistic of their use-
fulness in this field.

Interestingly, our textual comparison attributes per-
formed consistently well over all five projects. This is inter-
esting because each attribute relies on a project website built
for the project. However, the size of the project websites,
as well as their level of detail, varied dramatically. To see
such consistently positive results given this limitation shows
promise for textual analysis in documentation prioritization.
This is supported by the performance of our VSM approach,
which also performed well. Our intuition for these positive
results is that the perceived importance of documentation
is related to high-level concepts of the projects, which are
the contents of the project websites. Thus, it is our belief
that future research into documentation effort prioritization
should continue to explore textual analysis.

11.1 Future Work

Future work may consider other static source code attributes
that we did not investigate, such as Halstead complexity
metrics [50]. Our intuition is that other internal static source
code attributes would at best improve only marginally over
the results in this paper. However, other forms of static
analysis, such as historical changes or external attributes
may prove useful.

Our open source projects’ homepages list the main fea-
tures of the projects. The lists may be the reason that our
textual comparison attributes work better than the static
source code attributes. Future work may consider calculat-
ing textual comparison attributes based on only the words
of the main features instead of all the text in the homepages.

Based on the qualitative results in Section 9, several
other attributes may be considered in the future work
of documentation prioritization. The first candidate is the
quality of the identifiers, which may have an impact on the
documentation prioritization. The second candidate is the
role of the class in the system [51], [52], [53], [54].

The next step towards predicting high documentation ef-
fort priority areas of source code would be to research cross-
project learning. If cross-project learning is feasible, then
theoretically researchers could create a corpus of existing
projects with “gold sets” of high documentation effort prior-
ity classes. This corpus could be used with machine learning
to provide a ranking of classes in a project by documentation
effort priority. This would ensure developers could spend
sufficient effort documenting important sections of source
code. Lower priority sections of source code could have
their documentation supplemented by automatic summa-
rization approaches, such as our previous work [55] which

generates natural language summarizations of the context
of Java methods.

Our intuition is that textual comparison attributes, col-
lected by comparing to existing documentation, is the most
likely candidate for cross-project learning. The reasons for
this belief stem from the consistent performance of our tex-
tual comparison metrics as well as their applicability. While
the VSM approach performed well, the words that indicate
importance in one project are often completely unrelated
to words that indicate importance in another project. This
prevents the VSM approach from working on a corpus of
projects. Static source code attributes would be applicable
to external projects, but the consistently poor performance
in our study suggests that learning using such attributes
would not be effective.

Finally, our current approach helps programmers locate
important classes to document. But our approach does not
give the programmers suggestions about where and what to
document in a class file. Future work includes looking for
important methods and fields to document in a class.

12 RELATED WORK

The work in this paper is related to source code summa-
rization. Source code summarization approaches can automat-
ically generate descriptions of a software system. These
approaches aid program comprehension by selecting impor-
tant information from source code to present to program
end-users [56], [57]. Haiduc et al. [56] use text retrieval
techniques, specifically Latent Semantic Indexing (LSI) [58],
to select the most relevant terms in Java methods. Further
work by Haiduc et al. [57] also showed that a Vector Space
Model (VSM) could also be used to automatically generate
extractive summaries. De Lucia et al. [59] and Eddy et
al. [60] found that the “simpler” VSM based approach could
outperform LSI and Pachinko Allocation Model (PAM) [61]
at generating extractive summaries. Rodeghero et al. [62]
would later modify Haiduc et al.’s VSM approach based on
the results of a programmer eye tracking study. Recently,
researchers have developed tools that generate natural lan-
guage summaries of sections source code, such as Java
methods and classes [55], [63], [64], [65]. These approaches
could be used to summarize low documentation effort
priority sections of source code automatically. However,
natural-language summaries generated by state-of-the-art
source code summarization approaches are not yet of the
same quality as manually-written expert summaries [18].
Because of this lower quality, we argue high documentation
effort priority sections of source code should be documented
manually.

Recently, research has been carried out to mine soft-
ware version repositories [66], [67] using machine learning
techniques. One of the important challenges addressed is
to detect and interpret groups of software entities that
change together. Soetens et al. [68] proposed an approach
to detect (reconstruct) refactorings that are applied between
two software versions based on the change history. The
scope of this contribution is different than the one proposed
in this paper, to the best our knowledge our work is the
first study to prioritize software documentation effort using
mining approaches. Ratzinger et al. [69] used change history

Author Preprint

15

mining to predict the likelihood of a class to be refactored
in the next two months using machine learning techniques.
In their prediction models, they do not distinguish different
types of refactorings; they only assess the fact that develop-
ers try to improve the design. In addition, data extraction
from development history/repository is very well covered.
Research has been carried out to detect and interpret groups
of software entities that change together. These co-change
relationships have been used for different purposes. Zim-
mermann et al. [67] have used historical changes to point
developers to possible places that need change. In addi-
tion historical common code changes are used to cluster
software artifacts [70], to predict source code changes by
mining change history [71], to identify hidden architectural
dependencies [72], or to use them as change predictors [73].
The closest work to our contribution is the study proposed
by Ouni et al. [74] to prioritize refactoring opportunities for
software maintenance using multi-objective optimization.

Profiling is a dynamic program analysis methodology
where different attributes of code, such as memory size,
frequency of instruction or method calls, etc. Most com-
monly, profiling is used to optimize program execution.
However, profiling has been used in a number of software
engineering tasks. Reps et al. [75] and Chilimbi et al. [76]
used profiling to detect and locate software defects. Lutz et
al. [77] used profiling to detect when safety critical systems
are likely to fail due inappropriate instruction calls, memory
limitations, etc. Profiling can identify, in practice, which
methods are called most frequently in common execution
chains [78]. Using this information, we could get a set of
dynamic program analysis metrics. These metrics would
serve as another candidate feature set that could predict for
documentation prioritization.

13 CONCLUSION

In this paper, we researched whether static source code
attributes and textual information in source code could
be used to automatically prioritize documentation effort.
To the best of our knowledge, this is the first work to
conduct a study in order to evaluate documentation effort
prioritization. We conducted two user studies to determine
what sections of source code are most important to doc-
ument. We surprisingly found that common static source
code attributes are not good predictors of documentation
effort. However, we found that textual analysis of source
code and existing documents can be effective predictors of
documentation effort priority.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship Program
under Grant No. DGE-1313583. This work was also sup-
ported by the National Science Foundation CAREER Award
under Grant No. CCF-1452959. Any opinions, findings, and
conclusions expressed herein are the authors’, and do not
necessarily reflect those of the sponsors. The authors would
like to thank the participants of the user studies for their
valuable feedback. Additionally, the authors would like
to thank the employees at ABB Corporate Research who

took time and great consideration in our closed-source
study. This work is supported in part by the NSF CCF-
1452959 and CNS-1510329 grants. Any opinions, findings,
and conclusions expressed herein are the authors and do
not necessarily reflect those of the sponsors.

REFERENCES

[1] B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments
co-evolve? on the relation between source code and comment
changes,” in Proceedings of the 14th Working Conference on
Reverse Engineering, ser. WCRE ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 70–79. [Online]. Available:
http://dx.doi.org/10.1109/WCRE.2007.21

[2] M. Kajko-Mattsson, “A survey of documentation practice within
corrective maintenance,” Empirical Softw. Engg., vol. 10, no. 1, pp.
31–55, Jan. 2005. [Online]. Available: http://dx.doi.org/10.1023/B:
LIDA.0000048322.42751.ca

[3] A. Forward and T. C. Lethbridge, “The relevance of software
documentation, tools and technologies: a survey,” in Proceedings of
the 2002 ACM symposium on Document engineering, ser. DocEng ’02.
New York, NY, USA: ACM, 2002, pp. 26–33. [Online]. Available:
http://doi.acm.org/10.1145/585058.585065

[4] T. C. Lethbridge, J. Singer, and A. Forward, “How software
engineers use documentation: The state of the practice,” IEEE
Softw., vol. 20, no. 6, pp. 35–39, Nov. 2003. [Online]. Available:
http://dx.doi.org/10.1109/MS.2003.1241364

[5] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do
professional developers comprehend software?” in Proceedings
of the 2012 International Conference on Software Engineering, ser.
ICSE 2012. Piscataway, NJ, USA: IEEE Press, 2012, pp. 255–265.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2337223.
2337254

[6] I. R. Katz and J. R. Anderson, “Debugging: An analysis
of bug-location strategies,” Hum.-Comput. Interact., vol. 3,
no. 4, pp. 351–399, Dec. 1987. [Online]. Available: http:
//dx.doi.org/10.1207/s15327051hci0304 2

[7] S. Bugde, N. Nagappan, S. Rajamani, and G. Ramalingam, “Global
software servicing: Observational experiences at microsoft,” in
Proceedings of the 2008 IEEE International Conference on Global
Software Engineering, ser. ICGSE ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 182–191. [Online]. Available:
http://dx.doi.org/10.1109/ICGSE.2008.18

[8] G. C. Murphy, D. Notkin, and K. Sullivan, “Software reflexion
models: Bridging the gap between source and high-level models,”
ACM SIGSOFT Software Engineering Notes, vol. 20, no. 4, pp. 18–28,
1995.

[9] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Matsushita,
and S. Kusumoto, “Component rank: relative significance rank for
software component search,” in Proceedings of the 25th International
Conference on Software Engineering, ser. ICSE ’03. Washington,
DC, USA: IEEE Computer Society, 2003, pp. 14–24. [Online].
Available: http://dl.acm.org/citation.cfm?id=776816.776819

[10] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and
C. Cumby, “A search engine for finding highly relevant applica-
tions,” in Software Engineering, 2010 ACM/IEEE 32nd International
Conference on, vol. 1. IEEE, 2010, pp. 475–484.

[11] A. N. Langville and C. D. Meyer, Google’s PageRank and Beyond: The
Science of Search Engine Rankings. Princeton, NJ, USA: Princeton
University Press, 2006.

[12] J. Stylos and B. A. Myers, “Mica: A web-search tool for finding api
components and examples,” in Proceedings of the Visual Languages
and Human-Centric Computing, ser. VLHCC ’06. Washington,
DC, USA: IEEE Computer Society, 2006, pp. 195–202. [Online].
Available: http://dx.doi.org/10.1109/VLHCC.2006.32

[13] J. Stylos, B. A. Myers, and Z. Yang, “Jadeite: improving api
documentation using usage information,” in CHI ’09 Extended
Abstracts on Human Factors in Computing Systems, ser. CHI EA
’09. New York, NY, USA: ACM, 2009, pp. 4429–4434. [Online].
Available: http://doi.acm.org/10.1145/1520340.1520678

[14] R. Holmes and G. C. Murphy, “Using structural context to
recommend source code examples,” in Proceedings of the 27th
international conference on Software engineering, ser. ICSE ’05. New
York, NY, USA: ACM, 2005, pp. 117–125. [Online]. Available:
http://doi.acm.org/10.1145/1062455.1062491

Author Preprint

http://dx.doi.org/10.1109/WCRE.2007.21
http://dx.doi.org/10.1023/B:LIDA.0000048322.42751.ca
http://dx.doi.org/10.1023/B:LIDA.0000048322.42751.ca
http://doi.acm.org/10.1145/585058.585065
http://dx.doi.org/10.1109/MS.2003.1241364
http://dl.acm.org/citation.cfm?id=2337223.2337254
http://dl.acm.org/citation.cfm?id=2337223.2337254
http://dx.doi.org/10.1207/s15327051hci0304_2
http://dx.doi.org/10.1207/s15327051hci0304_2
http://dx.doi.org/10.1109/ICGSE.2008.18
http://dl.acm.org/citation.cfm?id=776816.776819
http://dx.doi.org/10.1109/VLHCC.2006.32
http://doi.acm.org/10.1145/1520340.1520678
http://doi.acm.org/10.1145/1062455.1062491

16

[15] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” IEEE Trans. Softw.
Eng., vol. 34, no. 4, pp. 434–451, Jul. 2008. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2008.26

[16] Y. Shmerlin, I. Hadar, D. Kliger, and H. Makabee, “To document
or not to document? an exploratory study on developers
motivation to document code,” in Advanced Information Systems
Engineering Workshops, ser. Lecture Notes in Business Information
Processing, A. Persson and J. Stirna, Eds. Springer International
Publishing, 2015, vol. 215, pp. 100–106. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-19243-7 10

[17] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical
debt,” J. Syst. Softw., vol. 86, no. 6, pp. 1498–1516, Jun. 2013.
[Online]. Available: http://dx.doi.org/10.1016/j.jss.2012.12.052

[18] P. W. McBurney and C. McMillan, “”automatic source code sum-
marization of context for java methods”,” in IEEE Transactions of
Software Engineering (to appear), 2015.

[19] D. Binkley, “Source code analysis: A road map,” in 2007 Future
of Software Engineering, ser. FOSE ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 104–119. [Online]. Available:
http://dx.doi.org/10.1109/FOSE.2007.27

[20] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” Software Engineering, IEEE
Transactions on, vol. 33, no. 1, pp. 2–13, Jan 2007.

[21] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang,
and A. Bener, “Defect prediction from static code features:
current results, limitations, new approaches,” Automated Software
Engineering, vol. 17, no. 4, pp. 375–407, 2010. [Online]. Available:
http://dx.doi.org/10.1007/s10515-010-0069-5

[22] R. Subramanyam and M. Krishnan, “Empirical analysis of ck met-
rics for object-oriented design complexity: implications for soft-
ware defects,” Software Engineering, IEEE Transactions on, vol. 29,
no. 4, pp. 297–310, April 2003.

[23] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and
evaluation of code clone detection techniques and tools:
A qualitative approach,” Sci. Comput. Program., vol. 74,
no. 7, pp. 470–495, May 2009. [Online]. Available: http:
//dx.doi.org/10.1016/j.scico.2009.02.007

[24] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature
location in source code: a taxonomy and survey,” Journal of
Software: Evolution and Process, vol. 25, no. 1, pp. 53–95, 2013.
[Online]. Available: http://dx.doi.org/10.1002/smr.567

[25] T. McCabe, “A complexity measure,” Software Engineering, IEEE
Transactions on, vol. SE-2, no. 4, pp. 308–320, Dec 1976.

[26] A. De Lucia, M. Di Penta, S. Stefanucci, and G. Ventuni, “Early
effort estimation of massive maintenance processes,” in Software
Maintenance, 2002. Proceedings. International Conference on, 2002, pp.
234–237.

[27] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict
component failures,” in Proceedings of the 28th International
Conference on Software Engineering, ser. ICSE ’06. New York,
NY, USA: ACM, 2006, pp. 452–461. [Online]. Available:
http://doi.acm.org/10.1145/1134285.1134349

[28] N. Fenton and N. Ohlsson, “Quantitative analysis of faults and
failures in a complex software system,” Software Engineering, IEEE
Transactions on, vol. 26, no. 8, pp. 797–814, Aug 2000.

[29] M. Shepperd and D. Ince, “A critique of three metrics,”
Journal of Systems and Software, vol. 26, no. 3, pp. 197 –
210, 1994. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/0164121294900116

[30] S. R. Chidamber and C. F. Kemerer, “Towards a metrics
suite for object oriented design,” SIGPLAN Not., vol. 26,
no. 11, pp. 197–211, Nov. 1991. [Online]. Available: http:
//doi.acm.org/10.1145/118014.117970

[31] B. Henderson-Sellers, Object-Oriented Metrics: Measures of Complex-
ity. Prentice Hall, 1996.

[32] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “Effective
identifier names for comprehension and memory,” Innovations in
Systems and Software Engineering, vol. 3, no. 4, pp. 303–318, 2007.
[Online]. Available: http://dx.doi.org/10.1007/s11334-007-0031-2

[33] A. A. Takang, P. A. Grubb, and R. D. Macredie, “The Effects of
Comments and Identifier Names on Program Comprehensibility:
An Experimental Study,” Journal of Programming Languages, vol. 4,
no. 3, pp. 143–167, 1996.

[34] P. McBurney and C. McMillan, “An empirical study of the textual
similarity between source code and source code summaries,”

Empirical Software Engineering, pp. 1–26, 2014. [Online]. Available:
http://dx.doi.org/10.1007/s10664-014-9344-6

[35] Y. Li, D. McLean, Z. A. Bandar, J. D. O’Shea, and K. Crockett,
“Sentence similarity based on semantic nets and corpus statistics,”
IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 8,
pp. 1138–1150, 2006.

[36] G. A. Miller, “Wordnet: A lexical database for english,” Commun.
ACM, vol. 38, no. 11, pp. 39–41, Nov. 1995. [Online]. Available:
http://doi.acm.org/10.1145/219717.219748

[37] G. Salton, A. Wong, and C. S. Yang, “A vector space
model for automatic indexing,” Commun. ACM, vol. 18,
no. 11, pp. 613–620, Nov. 1975. [Online]. Available: http:
//doi.acm.org/10.1145/361219.361220

[38] M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network Design.
Boston, MA, USA: PWS Publishing Co., 1996.

[39] G. R. Finnie, G. E. Wittig, and J.-M. Desharnais, “A comparison of
software effort estimation techniques: Using function points with
neural networks, case-based reasoning and regression models,”
J. Syst. Softw., vol. 39, no. 3, pp. 281–289, Dec. 1997. [Online].
Available: http://dx.doi.org/10.1016/S0164-1212(97)00055-1

[40] C. López-Martı́n and A. Abran, “Neural networks for predicting
the duration of new software projects,” J. Syst. Softw., vol.
101, no. C, pp. 127–135, Mar. 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2014.12.002

[41] A. Arcuri and G. Fraser, “Parameter tuning or default values?
an empirical investigation in search-based software engineering,”
Empirical Software Engineering, vol. 18, no. 3, pp. 594–623, 2013.
[Online]. Available: http://dx.doi.org/10.1007/s10664-013-9249-9

[42] F. Wilcoxon, Individual Comparisons by Ranking Methods, ser. Bobbs-
Merrill Reprint Series in the Social Sciences, S541. Bobbs-Merrill,
College Division.

[43] F. Deissenbock and M. Pizka, “Concise and consistent naming
[software system identifier naming],” in Program Comprehension,
2005. IWPC 2005. Proceedings. 13th International Workshop on, May
2005, pp. 97–106.

[44] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name?
a study of identifiers,” in In 14th International Conference on Program
Comprehension. IEEE Computer Society, 2006, pp. 3–12.

[45] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Relating identifier
naming flaws and code quality: An empirical study,” in Reverse
Engineering, 2009. WCRE ’09. 16th Working Conference on, Oct 2009,
pp. 31–35.

[46] ——, “Exploring the influence of identifier names on code quality:
An empirical study,” in Software Maintenance and Reengineering
(CSMR), 2010 14th European Conference on, March 2010, pp. 156–
165.

[47] G. Norman, “Likert scales, levels of measurement and the
“laws” of statistics,” Advances in Health Sciences Education,
vol. 15, no. 5, pp. 625–632, 2010. [Online]. Available: http:
//dx.doi.org/10.1007/s10459-010-9222-y

[48] G. M. Sullivan and A. R. Artino Jr, “Analyzing and interpreting
data from likert-type scales,” Journal of graduate medical education,
vol. 5, no. 4, pp. 541–542, 2013.

[49] B. Lantz, “Equidistance of likert-type scales and validation of
inferential methods using experiments and simulations,” The Elec-
tronic Journal of Business Research Methods, vol. 11, no. 1, pp. 16–28,
2013.

[50] M. H. Halstead, Elements of Software Science (Operating and Pro-
gramming Systems Series). New York, NY, USA: Elsevier Science
Inc., 1977.

[51] N. Dragan, M. L. Collard, and J. I. Maletic, “Reverse engineering
method stereotypes,” in 2006 22nd IEEE International Conference on
Software Maintenance, Sept 2006, pp. 24–34.

[52] ——, “Automatic identification of class stereotypes,” in Software
Maintenance (ICSM), 2010 IEEE International Conference on, Sept
2010, pp. 1–10.

[53] L. Moreno and A. Marcus, “Jstereocode: Automatically identifying
method and class stereotypes in java code,” in Proceedings of
the 27th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE 2012. New York, NY, USA: ACM, 2012, pp.
358–361.

[54] J. Y. Gil and I. Maman, “Micro patterns in java code,” in Proceedings
of the 20th Annual ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, ser. OOPSLA
’05. New York, NY, USA: ACM, 2005, pp. 97–116.

[55] P. W. McBurney and C. McMillan, “Automatic documentation
generation via source code summarization of method context,”

Author Preprint

http://dx.doi.org/10.1109/TSE.2008.26
http://dx.doi.org/10.1007/978-3-319-19243-7_10
http://dx.doi.org/10.1016/j.jss.2012.12.052
http://dx.doi.org/10.1109/FOSE.2007.27
http://dx.doi.org/10.1007/s10515-010-0069-5
http://dx.doi.org/10.1016/j.scico.2009.02.007
http://dx.doi.org/10.1016/j.scico.2009.02.007
http://dx.doi.org/10.1002/smr.567
http://doi.acm.org/10.1145/1134285.1134349
http://www.sciencedirect.com/science/article/pii/0164121294900116
http://www.sciencedirect.com/science/article/pii/0164121294900116
http://doi.acm.org/10.1145/118014.117970
http://doi.acm.org/10.1145/118014.117970
http://dx.doi.org/10.1007/s11334-007-0031-2
http://dx.doi.org/10.1007/s10664-014-9344-6
http://doi.acm.org/10.1145/219717.219748
http://doi.acm.org/10.1145/361219.361220
http://doi.acm.org/10.1145/361219.361220
http://dx.doi.org/10.1016/S0164-1212(97)00055-1
http://dx.doi.org/10.1016/j.jss.2014.12.002
http://dx.doi.org/10.1007/s10664-013-9249-9
http://dx.doi.org/10.1007/s10459-010-9222-y
http://dx.doi.org/10.1007/s10459-010-9222-y

17

in Proceedings of the 22Nd International Conference on Program
Comprehension, ser. ICPC 2014. New York, NY, USA: ACM, 2014,
pp. 279–290. [Online]. Available: http://doi.acm.org/10.1145/
2597008.2597149

[56] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program com-
prehension with source code summarization,” in Software Engi-
neering, 2010 ACM/IEEE 32nd International Conference on, vol. 2,
May 2010, pp. 223–226.

[57] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use
of automated text summarization techniques for summarizing
source code,” in Proceedings of the 2010 17th Working Conference
on Reverse Engineering, ser. WCRE ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 35–44. [Online]. Available:
http://dx.doi.org/10.1109/WCRE.2010.13

[58] T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction to
latent semantic analysis,” Discourse processes, vol. 25, no. 2-3, pp.
259–284, 1998.

[59] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and
S. Panichella, “Using ir methods for labeling source code artifacts:
Is it worthwhile?” in Program Comprehension (ICPC), 2012 IEEE
20th International Conference on, June 2012, pp. 193–202.

[60] B. Eddy, J. Robinson, N. Kraft, and J. Carver, “Evaluating source
code summarization techniques: Replication and expansion,” in
Program Comprehension (ICPC), 2013 IEEE 21st International Confer-
ence on, May 2013, pp. 13–22.

[61] W. Li and A. McCallum, “Pachinko allocation: Dag-structured
mixture models of topic correlations,” in Proceedings of the 23rd
International Conference on Machine Learning, ser. ICML ’06. New
York, NY, USA: ACM, 2006, pp. 577–584. [Online]. Available:
http://doi.acm.org/10.1145/1143844.1143917

[62] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and
S. D’Mello, “Improving automated source code summarization
via an eye-tracking study of programmers,” in Proceedings of
the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 390–401. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568247

[63] L. Moreno, J. Aponte, S. Giriprasad, A. Marcus, L. Pollock, and
K. Vijay-Shanker, “Automatic generation of natural language sum-
maries for java classes,” in Proceedings of the 21st International
Conference on Program Comprehension, ser. ICPC ’13, 2013.

[64] L. Moreno, A. Marcus, L. Pollock, and K. Vijay-Shanker, “Jsum-
marizer: An automatic generator of natural language summaries
for java classes,” in Program Comprehension (ICPC), 2013 IEEE 21st
International Conference on, May 2013, pp. 230–232.

[65] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-
Shanker, “Towards automatically generating summary comments
for java methods,” in Proceedings of the IEEE/ACM international
conference on Automated software engineering, ser. ASE ’10. New
York, NY, USA: ACM, 2010, pp. 43–52. [Online]. Available:
http://doi.acm.org/10.1145/1858996.1859006

[66] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll, “Predicting source
code changes by mining change history,” Software Engineering,
IEEE Transactions on, vol. 30, no. 9, pp. 574–586, Sept 2004.

[67] T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl, “Mining
version histories to guide software changes,” Software Engineering,
IEEE Transactions on, vol. 31, no. 6, pp. 429–445, June 2005.

[68] Q. Soetens, J. Perez, and S. Demeyer, “An initial investigation
into change-based reconstruction of floss-refactorings,” in Software
Maintenance (ICSM), 2013 29th IEEE International Conference on,
Sept 2013, pp. 384–387.

[69] J. Ratzinger, T. Sigmund, P. Vorburger, and H. Gall, “Mining
software evolution to predict refactoring,” in Empirical Software
Engineering and Measurement, 2007. ESEM 2007. First International
Symposium on, Sept 2007, pp. 354–363.

[70] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling
based on product release history,” in Proceedings of the International
Conference on Software Maintenance, ser. ICSM ’98. Washington,
DC, USA: IEEE Computer Society, 1998, pp. 190–. [Online].
Available: http://dl.acm.org/citation.cfm?id=850947.853338

[71] T. Gı̂rba, S. Ducasse, A. Kuhn, R. Marinescu, and R. Daniel,
“Using concept analysis to detect co-change patterns,” in Ninth
International Workshop on Principles of Software Evolution: In
Conjunction with the 6th ESEC/FSE Joint Meeting, ser. IWPSE ’07.
New York, NY, USA: ACM, 2007, pp. 83–89. [Online]. Available:
http://doi.acm.org/10.1145/1294948.1294970

[72] A. E. Hassan and R. C. Holt, “Predicting change propagation in
software systems,” in Proceedings of the 20th IEEE International

Conference on Software Maintenance, ser. ICSM ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 284–293. [Online].
Available: http://dl.acm.org/citation.cfm?id=1018431.1021436

[73] D. Beyer and A. Noack, “Clustering software artifacts based on
frequent common changes,” in Proceedings of the 13th International
Workshop on Program Comprehension, ser. IWPC ’05. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 259–268. [Online].
Available: http://dx.doi.org/10.1109/WPC.2005.12

[74] A. Ouni, M. Kessentini, S. Bechikh, and H. Sahraoui,
“Prioritizing code-smells correction tasks using chemical reaction
optimization,” Software Quality Control, vol. 23, no. 2, pp.
323–361, Jun. 2015. [Online]. Available: http://dx.doi.org/10.
1007/s11219-014-9233-7

[75] T. Reps, T. Ball, M. Das, and J. Larus, Software Engineering —
ESEC/FSE’97: 6th European Software Engineering Conference Held
Jointly with the 5th ACM SIGSOFT Symposium on the Foundations
of Software Engineering Zurich, Switzerland, September 22–25, 1997
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997,
ch. The use of program profiling for software maintenance with
applications to the year 2000 problem, pp. 432–449. [Online].
Available: http://dx.doi.org/10.1007/3-540-63531-9 29

[76] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K. Vaswani,
“Holmes: Effective statistical debugging via efficient path
profiling,” in Proceedings of the 31st International Conference on
Software Engineering, ser. ICSE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 34–44. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070506

[77] R. R. Lutz, “Software engineering for safety: A roadmap,” in
Proceedings of the Conference on The Future of Software Engineering,
ser. ICSE ’00. New York, NY, USA: ACM, 2000, pp. 213–226.
[Online]. Available: http://doi.acm.org/10.1145/336512.336556

[78] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A call
graph execution profiler,” in Proceedings of the 1982 SIGPLAN
Symposium on Compiler Construction, ser. SIGPLAN ’82. New
York, NY, USA: ACM, 1982, pp. 120–126. [Online]. Available:
http://doi.acm.org/10.1145/800230.806987

Author Preprint

http://doi.acm.org/10.1145/2597008.2597149
http://doi.acm.org/10.1145/2597008.2597149
http://dx.doi.org/10.1109/WCRE.2010.13
http://doi.acm.org/10.1145/1143844.1143917
http://doi.acm.org/10.1145/2568225.2568247
http://doi.acm.org/10.1145/1858996.1859006
http://dl.acm.org/citation.cfm?id=850947.853338
http://doi.acm.org/10.1145/1294948.1294970
http://dl.acm.org/citation.cfm?id=1018431.1021436
http://dx.doi.org/10.1109/WPC.2005.12
http://dx.doi.org/10.1007/s11219-014-9233-7
http://dx.doi.org/10.1007/s11219-014-9233-7
http://dx.doi.org/10.1007/3-540-63531-9_29
http://dx.doi.org/10.1109/ICSE.2009.5070506
http://doi.acm.org/10.1145/336512.336556
http://doi.acm.org/10.1145/800230.806987

